B). A <span>car that rounds a curve at a constant speed is accelerating.
</span><span>D). A car that is set to a constant speed of 60 miles per hour is
accelerating IF the road ever curves. </span><span>
</span>
Assuming the raindrop was stationary relative to the vertical distance to the ground at the start:
D=0.5at where d is distance, a is acceleration and t is time
D is 300 meters
a is 9.8 meter/sec squared
Solve for t in seconds
t = 61.2 seconds
v=at where v is velocity
a is 9.8 meters per second squared
t is 61.2 seconds
solve for v
v = 600 meters per second.
If it had an initial vertical velocity (v0) at the start :
d= 0.5at+v0t
and
v=at+v0
Answer:
Final velocity is 181.61 m/s at angle 40.44° below horizontal.
Explanation:
Initial horizontal velocity = 170 cos 35.6 = 138.23 m/s
Final horizontal velocity = 138.23 m/s
Considering vertical motion of projectile:
Initial vertical velocity, u = 170 sin 35.6 = 98.96 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = -208 m
We have v² = u² + 2as
Substituting
v² = 98.96² + 2 x -9.81 x -208
v = 117.79 m/s
Final velocity,


Final velocity is 181.61 m/s at angle 40.44° below horizontal.