Answer:
a) Initial angular speed = 30 rad/s
b) Final angular speed = 70 rad/s
Explanation:
a) We have equation of motion s = ut + 0.5at²
Here s = 400 radians
t = 8 s
a = 5 rad/s²
Substituting
400 = u x 8 + 0.5 x 5 x 8²
u = 30 rad/s
Initial angular speed = 30 rad/s
b) We have equation of motion v = u + at
Here u = 30 rad/s
t = 8 s
a = 5 rad/s²
Substituting
v = 30 + 5 x 8 = 70 rad/s
Final angular speed = 70 rad/s
These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.
Hope this helps! :)
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
A student measures the speed of yellow light in water to be 2.00 x 10⁸ m/s. Calculate the speed of light in air.
Solution:
Speed of yellow light in water (v) = 2.00 x 10⁸ m/s
Refractive Index of water with respect to air (μ) = 4/3
Refractive Index = Speed of yellow light in air / Speed of yellow light in water
Or, The speed of yellow light in air = Refractive Index × Speed of yellow light in water
or, = (4/3) × 2.00 x 10⁸ m/s
or, = 2.67 × 10⁸ m/s ≈ 3.0 × 10⁸ m/s
Hence, the required speed of yellow light in the air will be 3.0 × 10⁸ m/s.
If its atomic number is 48, then it has 48 protons in the nucleus
of each atom. Any more mass than that is supplied by the neutrons
that are mixed in there with the protons.
If the mass is 167, and 48 of those are protons, then there are
(167 - 48) = 119 neutrons
in each nucleus.