Answer:
= 40 cm
Explanation:
given data
string length = 30 cm
solution
we take here equation of length that is
L =
...............1
so
total length will be here


so
will be

= 40 cm
Explanation:
Value of the cross-sectional area is as follows.
A =
= 3.45 
The given data is as follows.
Allowable stress = 14,500 psi
Shear stress = 7100 psi
Now, we will calculate maximum load from allowable stress as follows.

= 
= 50025 lb
Now, maximum load from shear stress is as follows.

= 
= 48990 lb
Hence,
will be calculated as follows.

= 48990 lb
Thus, we can conclude that the maximum permissible load
is 48990 lb.
Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.
The largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
The given parameters;
- <em>distance between the two black holes, r = 10 AU = 1.5 x 10¹² m</em>
- <em>gravitational force between the two black holes, F = 6.9 x 10²⁵ N.</em>
- <em>combined mass of the two black holes = 5.20 x 10³⁰ kg</em>
The product of the two masses is calculated from Newton's law of universal gravitational as follows;

The sum of the two masses is given as;
m₁ + m₂ = 5.2 x 10³⁰ kg
m₂ = 5.2 x 10³⁰ kg - m₁
The first mass is calculated as follows;
m₁(5.2 x 10³⁰ - m₁) = 2.328 x 10⁶⁰
5.2 x 10³⁰m₁ - m₁² = 2.328 x 10⁶⁰
m₁² - 5.2 x 10³⁰m₁ + 2.328 x 10⁶⁰ = 0
<em>solve the quadratic equation using formula method</em>;
a = 1, b =- 5.2 x 10³⁰, c = 2.328 x 10⁶⁰

The second mass is calculated as follows;
m₂ = 5.2 x 10³⁰ kg - m₁
m₂ = 5.2 x 10³⁰ kg - 4.7 x 10³⁰ kg
m₂ = 5 x 10²⁹ kg
or
m₂ = 5.2 x 10³⁰ kg - 4.9 x 10²⁹ kg
m₂ = 4.7 x 10³⁰ kg
Thus, the largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
Learn more here:brainly.com/question/9373839
Answer
given,
D = 50 mm = 0.05 m
d = 10 mm = 0.01 m
Force to compress the spring




F = 3160 N
stress correction factor from stress correction curve is equal to 1.1
now, calculation of corrected stress


= 442.6 Mpa
The tensile strength of the steel material of ASTM A229 is equal to 1300 Mpa
now,



since corrected stress is less than the
hence, spring will return to its original shape.