Answer:
<h2>
3.94 kg</h2>
Explanation:
Given,
Force ( f ) = 30 N
Acceleration(a) = 7.6 m/s
Now, Let's find the mass of the ball
Using the Newton's second law of motion:
We get:

plug the value

Use the commutative property to reorder the terms

Swap the sides of the equation

Divide both sides of the equation by 7.6

Calculate

Hope this helps..
Best regards!!
Answer:
Force of static friction between the two surfaces
Explanation:
When two surfaces come into contact, they exert a force that resist the sliding of the two surfaces. This force is called static friction.
This force is given by the relation

Where,
μ - coefficient of static friction
η - normal force acting on the body
When a force acts on a body placed on a rough surface, it doesn't do any work if the applied force was less than the force of static friction.
So, in order to move the body, the applied force should be greater than the force of static friction.
Answer:
ω = 0.571 rad/s
Explanation:
given data
radius = 30 m
solution
we take here g = 9.8 m/s²
and g is express as
g = r × ω² ....................1
put here value and we get
9.8 = 30 × ω²
solve it we get
ω = 0.571 rad/s
Answer: 1.3 *10^6 Ω*m
Explanation: In order to explain this problem we have to use the following expression for the resistence:
R=L/(σ*A) where L and A are the length and teh area for the wire, respectively. σ is the conductivity of teh Nichrome.
Then, from mteh OHM law we have V=R*I so R=V/I=2/3.2=0.625 Ω
Finally we have:
σ=L/(R*A)=1.3/(0.625*1.6*10^-6)=1.3*10^6 Ω*m
Answer:
330 km
55*6= 330 km. An easy formula for this is multiplying time with speed.
Explanation:
330 kilometros
55 * 6 = 330 km. Una fórmula fácil para esto es multiplicar el tiempo por la velocidad.