The energy carried by one photon is directly proportional to its
frequency. So the photon energy is greatest for the electromagnetic
waves with the highest frequency / shortest wavelengths.
That's why when you get past visible light and on up through ultraviolet,
X-rays, and gamma rays, the radiation becomes dangerous ==> each
photon carries enough energy to tear electrons away from their atoms,
ripping molecules apart and damaging cells.
The photon with the highest energy is a gamma-ray photon.
Answer:
B. 22,22,23,23,22,22,23
Explanation:
The standard deviation is a measure of dispersion or variability of a data set. In order to determine the data set that has the smallest standard deviation, we shall investigate on the ranges of the data sets given. The range of a data set is simply the difference between the maximum and minimum values in a data set. A data set that has a smaller range also has a smaller standard deviation.
From the alternatives given, the data set given by alternative B has the smallest range and consequently the smallest standard deviation.
The maximum value is 23 while the minimum is 22. The range is 1.
A. Forced vibrations, such as those between a tuning fork and a large cabinet surface, result in a much lower sound than was produced by the original vibrating body.
Answer: C) Increase the amplitude of the wavelenghth to increase the intensity.
Explanation:
Answer:
A constant value everywhere in the universe.
Explanation:
The speed of light in a vacuum is a constant value. It is not affected by change in frequency or wavelength of the light.
Mathematically the speed of light is given as:
c = λf
where λ = wavelength and f - frequency
The speed of light is the constant of proportionality between frequency and wavelength. In order words, wavelength and frequency are inversely proportional. As the wavelength increases, frequency decreases and vice versa.
While the change in wavelength and frequency of light affect the energy of the light, its speed is a constant value as long as the medium is a vacuum.
The speed of light is also not dependent on the manner with which the light wave is moving.