The choices for this problem are bismuth, Bi; platinum, Pt; selenium, Se; calcium, Ca and copper, Cu. I think the correct answer would be selenium. The melting point of bismuth is at a temperature of 544.4 Kelvin. At a temperature of 525 K, it would exist as solid. Platinum melts at 2041.1 K. At 525 K, platinum would be in solid form. Selenium has a melting point at 494 K so that at a temperature of 525 K, it would exist in its liquid state. Calcium has a melting point of 1112 K so it would exist as solid at 525 K. Copper has a melting point at 1358 K, so it would still exist as solid at a temperature of 525 K. Therefore, the answer would only be selenium.
Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL
The question is asking us to determine what gives the Amethyst its purplish color. Amethyst colors range from light to dark purple. The most highly regarded are the transparent deep purple colors. Amethyst ( chemical formula: Si O2 ) is the purple variety of the mineral Quartz.The pure Quartz is often colorless. Amethyst gets its purplish color because of the presence of Iron ( Fe ) and other impurities in the gem. Answer: C. Iron.<span /><span />
Answer:
Diboron tetrachloride ---> B2Cl4
Objects would be like a lap, stove, & microwave. There’s many options.