Answer:
The angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is <u>10°.</u>
Explanation:
Given:
Mass of the driver is, 
Radius of circular turn is, 
Linear speed of the car is, 
Since, the car makes a circular turn, the driver experiences a centripetal force radially inward towards the center of the circular turn. Also, the driver experiences a downward force due to her weight. Therefore, two forces act on the driver which are at right angles to each other.
The forces are:
1. Weight = 
2. Centripetal force, 'F', which is given as:

Now, the angle of the net force acting on the driver with respect to the vertical is given by the tan ratio of the centripetal force (Horizontal force) and the weight (Vertical force) and is shown in the triangle below. Thus,
°
Therefore, the angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is 10°.
<span>Answer:
F(x) = ax^2 - bx
or
F(x) = ax² - bx
F(x) = 30x² - 6x
â«F(x)dx = â«(30x² - 6x)dx
as this is evaluated from zero to x
W = 10x³ - 3x² <===ANS
W = 10(0.42³) - 3(0.42²) - [10(0³) - 3(0²)]
W = 0.212 J <===ANS
W = 10(0.72³) - 3(0.72²) - [10(0.42³) - 3(0.42²)]
W = 1.966 J <===ANS</span>
Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
Answer:
Explanation:Explanation is ly/3a8Nt8nin a file
bit.
The answer is D because instantaneous means at a particular point in time