Answer:
insert (array[] , value , currentsize , maxsize )
{
if maxsize <=currentsize
{
return -1
}
index = currentsize-1
while (i>=0 && array[index] > value)
{
array[index+1]=array[index]
i=i-1
}
array[i+1]=value
return 0
}
Explanation:
1: Check if array is already full, if it's full then no component may be inserted.
2: if array isn't full:
- Check parts of the array ranging from last position of range towards initial range and determine position of that initial range that is smaller than the worth to be inserted.
- Right shift every component of the array once ranging from last position up to the position larger than the position at that smaller range was known.
- assign new worth to the position that is next to the known position of initial smaller component.
Answer:
One of the most common injuries that result from working on a scaffold is electrocution. If workers make contact with those wires while working, it can lead to electric shock, especially if that contact damages the wire or if the scaffold is made of metal.
A model of living systems as whole entities which maintain themselves through continuous input and output from the environment, developed by ludwig von bertalanffy is known as Systems theory.
<h3>
what are the application of systems theory?</h3>
It is a theoretical framework to understand the working mechanism of an organization.
It is an entity where all the elements necessary to carry out its functions.
A computer is the best example of showing the mechanism of system theory.
computer is a system which has many smaller sub-systems that have to work in coordinated manner.
These sub-systems are the processor, RAM, motherboard, hard drive and power supply.
Learn more about systems theory , here:
brainly.com/question/28278157
#SPJ4
Answer:
flow ( m ) = 4.852 kg/s
Explanation:
Given:
- Inlet of Turbine
P_1 = 10 MPa
T_1 = 500 C
- Outlet of Turbine
P_2 = 10 KPa
x = 0.9
- Power output of Turbine W_out = 5 MW
Find:
Determine the mass ow rate required
Solution:
- Use steam Table A.4 to determine specific enthalpy for inlet conditions:
P_1 = 10 MPa
T_1 = 500 C ---------- > h_1 = 3375.1 KJ/kg
- Use steam Table A.6 to determine specific enthalpy for outlet conditions:
P_2 = 10 KPa -------------> h_f = 191.81 KJ/kg
x = 0.9 -------------> h_fg = 2392.1 KJ/kg
h_2 = h_f + x*h_fg
h_2 = 191.81 + 0.9*2392.1 = 2344.7 KJ/kg
- The work produced by the turbine W_out is given by first Law of thermodynamics:
W_out = flow(m) * ( h_1 - h_2 )
flow ( m ) = W_out / ( h_1 - h_2 )
- Plug in values:
flow ( m ) = 5*10^3 / ( 3375.1 - 2344.7 )
flow ( m ) = 4.852 kg/s
Answer:
The level of the service is loss and the density is 34.2248 pc/mi/ln
Explanation:
the solution is attached in the Word file