Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation:
The best and most correct answer among the choices provided by your question is the fourth choice.
Chlorine and sodium are most likely to form monatomic ions.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
Explanation:
Given
mass of steel ball 
initial speed of ball 
Final speed of ball
(in upward direction)
Impulse imparted is given by change in the momentum of object
therefore impulse J is given by




so magnitude of Impulse =4 N-s
I think the answer is Geothermal energy.
Answer:
<u><em>Rate of dissolving compounds:</em></u>
If we increase the temperature of the solution, then the dissolving compound would dissolve more easily.
<u><em>Boiling Point of Compounds:</em></u>
If the inter-molecular forces of any compound is really strong, then the boiling point of the compound would be really high.