Figure A shows cross section of a land form or rock. In Figure B, compression stress is applied on it. When compression stresses are applied on a rock, it squeezes the rock cause fold or fracture. The fault formed by compression stress is called thrust fault. If the compression stresses/ force continue to act on a rock it will converge and form thrust fault. In Figure C, tension stresses is applied on the rock. When a tension stress applied on a rock it deforms/ lengthen. There are three type of deformations occur due to tension stresses. One is elastic deformation, in which, rock retains it original shape when force/stresses are removed. Second is plastic deformation, in which rock lengthen and change occur permanently. Third type of deformation is result into fracture or breaking of rock. In Figure C, shear stresses are applied on rock. Shear stresses are applied with equal magnitude but in opposite direction. It cause breaking of rock.
Answer:
The difference in the decibel corresponses to a constant difference in the loudness perceived.
The refore the sound intensity from the orchestra is like 100 times that of the violin.
Explanation:
1: only half the outlet is switched and the lamp is in the other half
2: the lamp is turned off.
3: The light bulb is burned out
4: the switch might be broken
5: the fuse might be blown
6: the electricity might be off
The change in pressure measured across a given distance called a Pressure Gradient. The pressure gradient creates a net force that is directed from higher to lower pressure and is called the Pressure Gradient Force. ... As air increases in velocity, it is deflected by the Coriolis Force.
Answer:
Explanation:
Wgen the sound is emitting from two speakers, the sound waves interfere each other. the locations at which the destructive interference occurs, we get no sound and the locations where constructive interference occurs, the sound occurs at that locations.