The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
The first two are always the reactants the products come after so they are last
Answer:
Explanation:
Given:
Charge = <em>q</em>
Electric field strength =
weight of the droplet = <em>mg</em>
The charge is suspended motionless. This is because the electric force on the charge is balanced by the weight of the droplet.
electric force on charged droplet, 
This is balanced by the weight, 
Equating the two:

it can be said that the speed of the east wind is
v=0.3608m/s
From the question we are told
A small boat sailed <u>straight </u>north out of a harbor in <em>strong </em>east wind (blowing from west to east).
After sailing for 120 minutes, it ended up hitting a buoy 60^\circ60 ∘ to the north-east of the harbor. If the straight-line distance between the buoy and the harbor is 3 km,
- what is the speed of the east wind?.
<h3> the speed of the east wind</h3>
Generally the equation for the distance is mathematically given as
BA=3000sin60
BA=2598.07m
Therefore
the speed of the east wind

v=0.3608
For more information on this visit
brainly.com/question/22568180