Calculate the H positive from the pH equation: pH equals -log (H positive). This would be 10 to the -6.49. Let's call the acid HA. To calculate Ka in this equation, Ka equals H positive times A- over HA. HA is going to be the 0 0121. So, Ka=(10^-6.49)^2/0.0121. This equals 1.05*10^-13/0.0121. Ka then equals 8.65*10^-12.
Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
The two s Orbital electrons and one d orbital electron, are the electrons that are lost by an atom of Iron when it forms the Fe3 + ion.
<span>I'm pretty sure it is called condensation</span>