Answer:
Answer: 1.095 * 10^22 atoms of P.
Explanation:
Answer:
1.5055×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Number of mole CO₂ = 2.5 moles
Number of molecules CO₂ =?
The number of molecules present in 2.5 moles CO₂ can be obtained as:
From Avogadro's hypothesis,
1 mole of CO₂ = 6.022×10²³ molecules
Therefore,
2.5 mole of CO₂ = 2.5 × 6.022×10²³
2.5 mole of CO₂ = 1.5055×10²⁴ molecules
Thus, 1.5055×10²⁴ molecules are present in 2.5 moles CO₂
The rate constant of the reaction K we can get it from this formula:
K=㏑2/ t1/2 and when we have this given (missing in question):
that we have one jar is labeled t = 0 S and has 16 yellow spheres inside and the jar beside it labeled t= 10 and has 8 yellow spheres and 8 blue spheres and the yellow spheres represent the reactants A and the blue represent the products B
So when after 10 s and we were having 16 yellow spheres as reactants and becomes 8 yellow and 8 blue spheres as products so it decays to the half amount so we can consider T1/2 = 10 s
a) by substitution in K formula:
∴ K = ㏑2 / 10 = 0.069
The amount of A (the reactants) after N half lives = Ao / 2^n
b) so no.of yellow spheres after 20 s (2 half-lives) = 16/2^2 = 4
and the blue spheres = Ao - no.of yellow spheres left = 16 - 4 = 12
c) The no.of yellow spheres after 30 s (3 half-lives) = 16/2^3 = 2
and the blue spheres = 16 - 2 = 14
Answer:
... chloride, calcium, potassium, and zinc was signifi- ... of cow and goat milk pasteurization on element retention ... certified American Chemical Society (ACS);. Whatman ... goat milk. Table 2 gives the content of 17 elements of ... found .0026 rag/100 g in raw and .0024 mg/100 ... mg/100 g chloride content (27) and another.