1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
3 years ago
15

In a semiconductor manufacturing process, three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume t

hat the probability that a wafer passes the test is 0.6 and that wafers are independent. Determine the cumulative distribution function of the number of wafers from a lot that pass the test at specified values. Round your answers to three decimal places (e.g. 98.765).
Engineering
1 answer:
gladu [14]3 years ago
5 0

Answer:

F(x) = 0           ;  x < 0

         0.064   ;  0 ≤ x < 1

         0.352   ;  1 ≤ x < 2

         0.784   ;  2 ≤ x < 3

            1        ;    x ≥ 3

Explanation:

Each wafer is classified as pass or fail.

The wafers are independent.

Then, we can modelate X : ''Number of wafers that pass the test'' as a Binomial random variable.

X ~ Bi(n,p)

Where n = 3 and p = 0.6 is the success probability

The probatility function is given by :

P(X=x)=f(x)=nCx.p^{x}.(1-p)^{n-x}

Where nCx is the combinatorial number

nCx=\frac{n!}{x!(n-x)!}

Let's calculate f(x) :

f(0)=3C0.(0.6^{0}).(0.4^{3})=0.4^{3}=0.064

f(1)=3C1.(0.6^{1}).(0.4^{2})=0.288

f(2)=3C2.(0.6^{2}).(0.4^{1})=0.432

f(3)=3C3.(0.6^{3}).(0.4^{0})=0.6^{3}=0.216

For the cumulative distribution function that we are looking for :

P(X\leq x)=F(x)

F(0)=f(0)\\F(1)=f(0)+f(1)\\F(2)=f(0)+f(1)+f(2)\\F(3)=f(0)+f(1)+f(2)+f(3)=1

F(0)=0.064\\F(1)=0.064+0.288=0.352\\F(2)=0.064+0.288+0.432=0.784\\F(3)=0.064+0.288+0.432+0.216=1

The cumulative distribution function for X is :

F(x) = 0           ;  x < 0

         0.064   ;  0 ≤ x < 1

         0.352   ;  1 ≤ x < 2

         0.784   ;  2 ≤ x < 3

            1        ;    x ≥ 3

You might be interested in
Proper handling of blueprints includes which of the following
marta [7]

Answer:

folding plans neatly after use

3 0
3 years ago
An air compressor of mass 120 kg is mounted on an elastic foundation. It has been observed that, when a harmonic force of amplit
kupik [55]

Answer:

equivalent stiffness is 136906.78 N/m

damping constant is 718.96 N.s/m

Explanation:

given data

mass = 120 kg

amplitude = 120 N

frequency = 320 r/min

displacement = 5 mm

to find out

equivalent stiffness and damping

solution

we will apply here frequency formula that is

frequency ω = ω(n) √(1-∈ ²)      ......................1

here  ω(n) is natural frequency i.e = √(k/m)

so from equation 1

320×2π/60 = √(k/120) × √(1-2∈²)

k × ( 1 - 2∈²) = 33.51² ×120

k × ( 1 - 2∈²) = 134752.99    .....................2

and here amplitude ( max ) of displacement is express as

displacement = force / k  ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})

put here value

0.005 = 120/k   ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})  

k ×∈ × √(1-2∈²) = 1200       ......................3

so by equation 3 and 2

\frac{k\varepsilon \sqrt{1-\varepsilon^2})}{k(1-2\varepsilon^2)} = \frac{12000}{134752.99}

\varepsilon^{2} - \varepsilon^{4}  = 7.929 * 10^{-3} - 0.01585 * \varepsilon^{2}

solve it and we get

∈ = 1.00396

and

∈ = 0.08869

here small value we will consider so

by equation 2 we get

k × ( 1 - 2(0.08869)²) = 134752.99

k  = 136906.78 N/m

so equivalent stiffness is 136906.78 N/m

and

damping is express as

damping = 2∈ √(mk)

put here all value

damping = 2(0.08869) √(120×136906.78)

so damping constant is 718.96 N.s/m

7 0
3 years ago
(TCO 4) A system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without
steposvetlana [31]

Answer:

The frequency that the sampling system will generate in its output is 70 Hz

Explanation:

Given;

F = 190 Hz

Fs = 120 Hz

Output Frequency = F - nFs

When n = 1

Output Frequency = 190 - 120 = 70 Hz

Therefore, if a system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without further modification, the frequency that the sampling system will generate in its output is 70 Hz

5 0
4 years ago
Firefighters are holding a nozzle at the end of a hose while trying to extinguish a fire. The nozzle exit diameter is 8 cm, and
ivanzaharov [21]

Question

Determine the average water exit velocity

Answer:

53.05 m/s

Explanation:

Given information

Volume flow rate, Q=16 m^{3}/min

Diameter d= 8cm= 0.08 m

Assumptions

  • The flow is jet flow hence momentum-flux correction factor is unity
  • Gravitational force is not considered
  • The flow is steady, frictionless and incompressible
  • Water is discharged to the atmosphere hence pressure is ignored

We know that Q=AV and making v the subject then

V=\frac {Q}{A} where V is the exit velocity and A is area

Area, A=\frac {\pi d^{2}{4} where d is the diameter

By substitution

V=\frac {16\times 4}{\pi 0.08^{2}}=3183.098862 m/min

To convert v to m/s from m/s, we simply divide it by 60 hence

V=\frac {3183.098862  m/min}{60 s}=53.0516477 m/s\approx 53.05 m/s

3 0
3 years ago
Primary Creep: slope (creep rate) decreases with time
Igoryamba

Answer:

true

Explanation:

Creep is known as the time dependent deformation of structure due to constant load acting on the body.

Creep is generally seen at high temperature.

Due to creep the length of the structure increases which is not fit for serviceability purpose.

When time passes structure gain strength as the structure strength increases with time so creep tends to decrease.

When we talk about Creep rate for new structure the creep will be more than the old structure i.e. the creep rate decreases with time.

5 0
4 years ago
Other questions:
  • Which of the following vehicles has no emissions?
    9·1 answer
  • If you are in a tornado situation, which of the following actions would put you in danger?
    11·1 answer
  • The formula for the cross sectional area of specimen at the middle is
    5·1 answer
  • Diffrerentiate y=cos^{4} (3x+1)
    5·1 answer
  • Drag each label to the correct location on the chart. Classify the organisms based on how they obtain food.
    14·2 answers
  • Factors such as brake shoe orientation, pin location, and direction of rotation determine whether a particular brake shoe is con
    12·1 answer
  • Where would outdoor Air quality monitors need to be placed to properly record data?
    15·1 answer
  • What is the primary difference between the process of lost-wax casting as practiced in ancient times and that same process today
    13·1 answer
  • What is the first step of the engineering design process?
    9·2 answers
  • A linear frequency-modulated signal makes a good test for aliasing, because the frequency moves over a range. This signal is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!