Answer:
sorry not having idea about answer
Answer:
ηa=0.349
ηb=0.345
Explanation:
The enthalpy and entropy at state 3 are determined from the given pressure and temperature with data from table:

The quality at state 4 is determined from the condition
and the entropies of the components at the condenser pressure taken from table:

The enthalpy at state 4 then is:

Part A
In the case when the water is in a saturated liquid state at the entrance of the pump the enthalpy and specific volume are determined from A-5 for the given pressure:

The enthalpy at state 2 is determined from an energy balance on the pump:

=346.67 kJ/kg
The thermal efficiency is then determined from the heat input and output in the cycle:

Part B
In the case when the water is at a lower temperature than the saturation temperature at the condenser pressure we look into table and see the water is in a compressed liquid state. Then we take the enthalpy and specific volume for that temperature with data from and the saturated liquid values:

The enthalpy at state 2 is then determined from an energy balance on the pump:

=299.79 kJ/kg
The thermal efficiency in this case then is:

Explanation:
Things related to engineering:
- Electric Motor
- Combustion Engine
Hope this helped!
Answer:
The pumping power per ft of pipe length required to maintain this flow at the specified rate 0.370 Watts
Explanation:
See calculation attached.
- First obtain the properties of water at 60⁰F. Density of water, dynamic viscosity, roughness value of copper tubing.
- Calculate the cross-sectional flow area.
- Calculate the average velocity of water in the copper tubes.
- Calculate the frictional factor for the copper tubing for turbulent flow using Colebrook equation.
- Calculate the pressure drop in the copper tubes.
- Then finally calculate the power required for pumping.