Explanation:
- Evaporation is defined as a process in which liquid state of water is changing into vapor state.
So, we need to break the bonds of liquid substance in order to convert it into vapor state. And, energy is absorbed for breaking of bonds which means that evaporation is an endothermic process.
Hence, the statement evaporation of water is an exothermic process is false.
- When a hydrocarbon reacts with oxygen and leads to the formation of carbon dioxide and water then this type of reaction is known as combustion reaction.
A combustion reaction will always release heat energy. Hence, combustion reaction is exothermic in nature.
- When energy is transferred as heat from the surroundings to the system then it means energy is being absorbed by the system. And, absorption of heat is an endothermic process for which
is positive.
- Whereas when energy is transferred from system to the surrounding then it means energy is released by the system which is an exothermic process.
Hence, for an exothermic process value of
is negative.
Thus, we can conclude that statements which are true are as follows.
- A combustion reaction is exothermic.
- When energy is transferred as heat from the system to the surroundings,
is negative.
- For an endothermic reaction Deta H is positive.
Answer:
1. Ba2+ 2. Sr2+
Explanation:
When a solution contains the Barium ,Ba²⁺ ion or Strontium, Sr²⁺ ion, they reacts with either H₂SO₄(aq) or Na₂SO₄(aq) to produce a white precipitate of BaSO₄(s) and SrSO₄(s) respectively
The chemical reactions are given below
Ba²⁺ + H₂SO₄(aq) ⇒ BaSO₄(s) + 2H⁺ (aq)
Ba²⁺ + Na₂SO₄(aq) ⇒ BaSO₄(s) + 2Na⁺ (aq)
Sr²⁺ + H₂SO₄(aq) ⇒ SrSO₄(s) + 2H⁺ (aq)
Sr²⁺ + Na₂SO₄(aq) ⇒ SrSO₄(s) + 2Na⁺ (aq)
Answer:
Q = 90,000 J
Explanation:
Given data:
Mass skillet = 2000 g
Specific heat capacity = 0.450 J/g.°C
Energy required to raise temperature = ?
Initial temperature = 25°C
Final temperature = 125°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 125°C - 25°C
ΔT = 100°C
Q = 2000 g × 0.450 J/g.°C × 100°C
Q = 90,000 J
check out this article i found it very helpful,
I couldn't find the answer to your question.
Sun to kelp
kelp to sea urchin
sea urchin to otter
otter to shark
kelp,sea urchin,otter,shark to bacteria
bacteria back to kelp