This sounds very much like a chicken-egg problem.
The first thing that formed must be hydrogen nuclei. The only other alternative is that the atom was created instantly, and the nuclei sprang forth at the same time as the atom, meaning that neither was technically first. The logic is that an atom can’t form without a nucleus, but it theoretically could be created instantly.
The mass of 254 mL of water is 254 g. Since the density of water is 1g/mL, we can simply multiply the density 1g/mL by 254 mL of water and get 254 g as our answer. Since mL is in the numerator and denominator, mL cancels out and we are left with g only.
Answer:
The correct answer is CaO > LiBr > KI.
Explanation:
Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.
With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.
The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.
From the given observations,
You can see that as the concentration is doubled, half-life is halved.
That is,half-life is inversely proportional to concentration
As t( half-life) ~ 1/a^(n-1)
For this case n = 2,second order reaction.
R = k X a^n
Using the above formula you will get the rate and rate constant.