Answer: The bulk of liquids separate from the standard substance through crystallization, creating a crystalline block.
Freezing is almost often an exothermic mechanism which ensures that heat is emitted when liquid transforms into concrete.
The energy emitted after freezing, known as the fusion enthalpy, is a latent heat, which is precisely the same as the energy used to melt the same volume of solid.
Answer:
4,38%
small molecular volumes
Decrease
Explanation:
The percent difference between the ideal and real gas is:
(47,8atm - 45,7 atm) / 47,8 atm × 100 = 4,39% ≈ <em>4,38%</em>
This difference is considered significant, and is best explained because argon atoms have relatively <em>small molecular volumes. </em>That produce an increasing in intermolecular forces deviating the system of ideal gas behavior.
Therefore, an increasing in volume will produce an ideal gas behavior. Thus:
If the volume of the container were increased to 2.00 L, you would expect the percent difference between the ideal and real gas to <em>decrease</em>
<em />
I hope it helps!
True, because if it wasn't a chemical reaction it would have proceeded to stay the same. but it begins to bubble.
sorry if this isn't the best answer I'm trying my best.
Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ