Answer:
There are 0.0305 calories in 0.128 joules
Explanation:
Given that,
Heat absorbed, Q = 0.128 J
We need to find the heat energy absorbed in calories.
We know that the relation between joules and calories is as follows :
1 calorie = 4.184 J
1 J = (1/4.184) J
So,

So, there are 0.0305 calories in 0.128 joules
Answer:
km/h
mph
iph
Explanation:
I have no idea what mis or dit could be
km/h is kilometers per hour
mph is miles per hour
I assume iph is inches per hour?
Answer:
Reaction is already balanced
Explanation:
The equation in reaction 1 is given as;
CH3COOH + NaHCO3 --> CO2 + H2O + Na+ + CH3COO-
The reaction is already balanced. This is because the umber of atoms of elements in the reactant is equal to that of the products
Carbon
Reactant = 2 + 1 = 3
Product = 2 + 2 = 3
Hydrogen
Reactant = 3 + 1 + 1 = 5
Product = 2 + 3 = 5
Oxygen
Reactant = 2 + 3 = 5
Product = 2 +1 + 2 = 5
Sodium
Reactant = 1
Product = 1
Most rocks that we encounter in our normal everyday lives are sedimentary rocks. Sedimentary rocks are rocks that have been worn down gradually over long periods of time. Because it takes very long periods of time (couple decades) for these rocks to change, it often seems as if they don't change at all, when in reality the change is too small for us to realize it!
Answer:
The density of the ideal gas is directly proportional to its molar mass.
Explanation:
Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.
......equation (1)
According to the ideal gas law for ideal gas:
......equation (2)
Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas
As we know,
The number of moles: 
where m is the given mass of gas and M is the molar mass of the gas
So equation (2) can be written as:

⇒ 
⇒
......equation (3)
Now from equation (1) and (3), we get
⇒ Density of an ideal gas:
⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>
<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>