Answer:
m = 4.7 μg
Explanation:
Given data:
density of acetone = 60.0 μg/L
Volume = 79.0 mL
Mass = ?
Solution:
Formula:
d = m/v
v = 79.0 mL × 1L /1000 mL
v = 0.079 L
Now we will put the values on formula:
d = m/v
60.0 μg/L = m/0.079 L
m = 60.0 μg/L × 0.079 L
m = 4.7 μg
So health risk limit for acetone = 4.7 μg
The correct option is this: SPECIFIC HEAT CAPACITY IS AN INTENSIVE PROPERTY AND DOES NOT DEPEND ON SAMPLE SIZE.
Generally, all the properties of matters can be divided into two classes, these are intensive and extensive properties. Intensive properties are those properties that are not determined by the quantity of the material that is present or available. Examples of intensive properties are colour, density and specific heat capacity. For instance, whether you have a bucket of water or a cup of water, the quantity does not matter, the colour of water will always remain the same. Extensive properties in contrast, are those properties that depend on the quantity of material that is available. Examples are mass, heat capacity and volume.
Answer:
See Explanation
Explanation:
An endothermic reaction is one in which energy is absorbed and the change in enthalpy for the reaction is positive.
If we look at the reaction 2HgO + 45kcal ----> 2Hg + O2; we will notice that
i) 45kcal of energy was taken in (absorbed) for the reaction to occur
ii) The value of the reaction enthalpy is positive
For these two reasons, the reaction is an endothermic reaction as written.
<h2>Hey there! :) </h2>
<h3>The treatment and disposal of Mercury:</h3>
- Heating and incineration can release the mercury vapor into atmosphere causing atmospheric pollution. The process of solidification and disposal into secured landfill, gas phase recovery of mercury, and thermal treatment is gaining interest in mercury treatment and recovery field by various researchers and industries.
<h2>HOPE IT HELP YOU </h2>