Answer:
c) 0.080 M Al₂(SO₄)₃
Explanation:
Ion [SO₄²⁻] concentration of each solution is:
a) 0.075 M H₂SO₄: <em>[SO₄²⁻] = 0.075M</em>. Because 1 mole of H₂SO₄ contains 1 mole of SO₄²⁻
b) 0.15 M Na₂SO₄: <em>[SO₄²⁻] = 0.15M</em>. Also, 1 mole of Na₂SO₄ contains 1 mole of SO₄²⁻
c) 0.080 M Al₂(SO₄)₃ [SO₄²⁻] = 0.080Mₓ3 =<em> 0.240M</em>. Because 1 mole of Al₂(SO₄)₃ contains 3 moles of SO₄²⁻.
<h3>Thus, the soluion that has the greatest [SO₄²⁻] is 0.080 M Al₂(SO₄)₃</h3>
Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).
Answer:
Condensation occurs when a gas changes into a liquid.
Explanation:
Condensation is when a gas becomes a liquid. It happens when a gas, like water vapor, cools down. Matter can exist in three different states: solid, liquid or gas.
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).