1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bagirrra123 [75]
3 years ago
12

Label each process as a physical or chemical change and state how you know.

Chemistry
1 answer:
Anuta_ua [19.1K]3 years ago
4 0

Fogging a mirror with your breath is a physical change because it involves a phase change of water vapor condensing and adsorbing to the mirror surface. Phase changes are physical changes.

Breaking a bone is a physical change insofar as we're focusing on the  "breaking" part.

Mending a broken bone, however, is a different story. Bones are living things: They consist of tissues that in turn consist of cells. The actual mending process involves some very complicated biochemistry. Suffice it to say that mending a broken bone would be a chemical change.

Burning paper is a chemical change. Burning anything implies combustion, which is a chemical reaction where some fuel is oxidized (usually by oxygen gas, producing carbon dioxide gas and water vapor).

Slicing potatoes for fries is a physical change. You can slice, dice, smash, mash, stretch, bend, compress, or grind a potato: What you will have is still a potato (okay, there are some chemical changes going on as you're rupturing cells in the process, causing them to release their contents which may participate in chemical reactions). But the key, again, is that cutting up some material doesn't fundamentally change the chemical identity of that material.

Mixing sugar with coffee actually involves two physical processes: the mixing and the (presumed) solvation of the solid sugar particles as they dissolve into the coffee. In either case, either mixing or dissolving would be a physical change. The sugar molecules are still in the coffee and are chemically unchanged.

Frying chicken is a chemical change. In fact, frying chicken likely entails several different types of chemical changes. The common thread among them is that frying involves breaking chemical bonds in and on the chicken by the addition of thermal energy, and new chemical bonds end up being formed. That's the hallmark of a chemical change.

A nail rusting is a chemical change. Rusting is an electrochemical process; the familiar corrosion of iron into rust is, at bottom, a chemical reaction where iron reacts with oxygen to form iron oxides (often catalyzed by the presence of water and salts).

A paper ripping is analogous to slicing potatoes: it's a physical change. If you ripped one sheet of paper into two halves, each half would retain all the chemical properties of the original sheet.

Likewise, wood burning is analogous to burning paper, and as such is a chemical change. Again, combustion is a chemical process.

As we said earlier with sugar in coffee, mixing in itself is a physical process. While it may seem like you've permanently changed the nature of the water by dyeing it with food coloring, the molecules comprising the food coloring are simply dispersed within the vast sea of water molecules. There are no intramolecular bonds that are broken or formed; the chemical identities of all the substances here are preserved. So, this is a physical change.

Food molding (rotting) is a chemical change. Rotting is biochemical decomposition: the chemical bonds that make up the food are broken down by enzymes released by the mold.

Writing on paper, whether it be with a pen, pencil, crayon, or marker, is a physical change. The molecules from the writing instrument are physically stuck to the paper. But unless you're writing on paper by, say, burning letters onto it, there are no chemical changes occurring when the writing instrument meets the paper.

As with writing on paper, dyeing fabric can be a physical change. The dye consists of molecules that interact with light in a way that we perceive a certain color. When dyeing fabric, these molecules are transferred and fixed into the fabric by adsorption, absorption, and other intermolecular phenomena. But the molecules of the dye (and the molecules in the fabric) don't experience any breaking and forming of bonds. All of the substances involved retain their chemical identities.

<u>However</u>, it's <em>possible </em>that, depending on the dye, there may be chemical changes involved. Some dyes, appropriate named "reactive dyes," undergo chemical reactions with their substrate (which, in this case, would be the fabric), or dyes may be used that undergo chemical reactions with one another, both of which would constitute chemical changes. And it can depend on what you mean by "dyeing": Bleaching a colored shirt can technically be conceived of as "dyeing" the shirt white, and this process involves cleavage of bonds within the color-producing molecules in the fabric by reacting with the molecules in the bleach.

So, for dyeing fabric, it can be a physical or chemical change depending on the dye.  

You might be interested in
A sample of nitrogen is initially at a pressure of 1.7 kPa, a temperature of -10 C and a volume of 7.5 m3. Then the volume is de
zhannawk [14.2K]

Answer:

\boxed{\text{2.6 kPa}}

Explanation:

To solve this problem, we can use the Combined Gas Laws:

\dfrac{p_{1}V_{1} }{T_{1}} = \dfrac{p_{2}V_{2} }{T_{2}}

Data:

p₁ = 1.7 kPa; V₁ = 7.5 m³;  T₁ =   -10 °C

p₂ = ?;          V₂ = 3.8 m³; T₂ = 200  K

Calculations:

(a) Convert temperature to kelvins

T₁ = (-10   + 273.15) K = 263.15 K

(b) Calculate the pressure

\begin{array}{rcl}\dfrac{1.7 \times 7.5 }{263.15} & = & \dfrac{p_{2} \times 3.8}{200}\\\\0.0485 & = & 0.0190p_{2}\\p_{2} & = & \textbf{2.6 kPa}\\\end{array}\\\text{The new pressure of the gas is \boxed{\textbf{2.6 kPa}}}

7 0
2 years ago
Hey ignore ths i didn mean to post
Sauron [17]

Answer:

WHYYYYYYYYYYYYYYYYYYYYYYY

Explanation:

you said you didnt mean to post it but still typed it and posted it LOLLLLLLLLLLLLLL

7 0
2 years ago
A 7.0 g sample of a hydrocarbon (a molecule that has only hydrogen and carbon) is subject to combustion analysis. The mass of CO
Akimi4 [234]

Answer: The empirical formula for the given compound is CH_2

Explanation:

The chemical equation for the combustion of compound having carbon and hydrogen follows:

C_xH_y+O_2\rightarrow CO_2+H_2O

where, 'x' and 'y' are the subscripts of carbon and hydrogen respectively.

We are given:

Mass of CO_2=22.0g

We know that:

Molar mass of carbon dioxide = 44 g/mol

For calculating the mass of carbon:

In 44 g of carbon dioxide, 12 g of carbon is contained.

So, in 22.0 g of carbon dioxide, \frac{12}{44}\times 22.0=6g of carbon will be contained.

For calculating the mass of hydrogen:

Mass of hydrogen = Mass of sample - Mass of carbon

Mass of hydrogen = 7.0 g - 6 g

Mass of hydrogen = 1.0 g

To formulate the empirical formula, we need to follow some steps:

Step 1: Converting the given masses into moles.

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{6g}{12g/mole}=0.5moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{1.0g}{1g/mole}=1.0moles

Step 2: Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.5 moles.

For Carbon = \frac{0.5}{0.5}=1

For Hydrogen  = \frac{1.0}{0.5}=2

Step 3: Taking the mole ratio as their subscripts.

The ratio of Fe : C : H = 1 : 2

Hence, the empirical formula for the given compound is C_{1}H_{2}=CH_2

4 0
3 years ago
Lagta ha bhaijaan sa sab bahenjaan naraz haan koi bat ni kr raha​
Fiesta28 [93]

Answer:

maybe,lol

Explanation:

5 0
2 years ago
a student prepares a dilute solution of sodium hydroxidem, NaOH (aq), starting with 6 M sodium hydroxide. She then titrates a 1.
Serjik [45]

Answer:

M = 0.3077 M

Explanation:

As I said in the comments, you are missing the required volume of the base to react with the KHP. I found this on another site, and the volume it used was 21.84 mL.

Now, KHP is a compound often used to standarize NaOH or KOH solutions. This is because it contains a mole ratio of 1:1 with the base, so it's pretty easy to use and standarize any base.

Now, as we are using an acid base titration, the general expression to use when a acid base titration reach the equivalence point would be:

n₁ = n₂   (1)

This, of course, if the mole ratio is 1:1. In the case of KHP and NaOH it is.

Now, we also know that moles can be expressed like this:

n = M * V   (2)

And according to this, we are given the volume of base and the required mass of KHP. So, if we want to know the concentration of the base, we need to get the moles of the KHP, because in the equivalence point, these moles are the same moles of base.

The reported molar mass of KHP is 204.22 g/mol, so the moles are:

n = 1.372 / 204.22 = 6.72x10⁻³ moles

Now, we will use expression (2) to get the concentration of the diluted base:

n = M * V

M = n / V

M = 6.72x10⁻³ / 0.02184

M NaOH = 0.3077 M

This is the concentration of the dilute solution of NaOH

3 0
3 years ago
Other questions:
  • If a sample of a substance contains 9.03 x 1023 representative particles, how many moles does this represent?
    7·1 answer
  • 11 swimming pool water can be kept free of harmful bacteria by adding aqueous sodium chlorate(i),naocl. this reacts with water t
    15·1 answer
  • A chemist requires 0.450 mol na2co3 for a reaction. how many grams does this correspond to?
    10·2 answers
  • How does molecular shape affect polarity?
    10·2 answers
  • 4. Assume that the water stream is replaced by a stream of CCI.. Predict what would happen in each case:
    13·1 answer
  • Chemical equations
    10·2 answers
  • Are all molecules of a particular substance alike?
    7·1 answer
  • HURRY PLS HELP PLEASE: A 40.0-L sample of fluorine is heated from 363 Kelvin to 459 K. What volume will the sample occupy at the
    5·1 answer
  • if 200.0 of copper (II) sulfate react with an excess of zinc metal, what is the theoretical yield of copper?
    12·1 answer
  • If you could measure the mass of the substances inside the cup before and after the reaction, you would see that the mass decrea
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!