I believe it’s called Alluvium! It’s where the river mouth is build up of gravel,sand,silt, and clay!!
A beam of laser is directed at a reflecting surface put on the moon when the beam of laser is reflected a receiver on the each measure the time since the beam was sent till it was received. Laser is simply light so it has constant velocity in vacuum ~ air (c = 3 x 10^8 m/s)
to find the distance:
t : time measured between launching the beam and receiving it
d : distance
d = ct
Answer:
The deceleration is 0.18 m/s²
Explanation:
Hi there!
Using Newton´s second law, we can calculate the deceleration:
∑F = m · a
Where:
∑F = the sum of all forces in a given direction.
m = mass of the object.
a = acceleration.
Solving for a:
∑F/m = a
The only force acting on the meteor is the applied force of 8.6 N. So, the acceleration will be:
8.6 N / 48.9 kg = a
a = 0.18 m/s²
The deceleration is 0.18 m/s² or, in other words, the acceleration is -0.18 m/s²
Have a nice day!
Answer:
temperature
Explanation:
when you put a water on the stove the water will start to boil there for temperature
An interesting problem, and thanks to the precise heading you put for the question.
We will assume zero air resistance.
We further assume that the angle with vertical is t=53.13 degrees, corresponding to sin(t)=0.8, and therefore cos(t)=0.6.
Given:
angle with vertical, t = 53.13 degrees
sin(t)=0.8; cos(t)=0.6;
air-borne time, T = 20 seconds
initial height, y0 = 800 m
Assume g = -9.81 m/s^2
initial velocity, v m/s (to be determined)
Solution:
(i) Determine initial velocity, v.
initial vertical velocity, vy = vsin(t)=0.8v
Using kinematics equation,
S(T)=800+(vy)T+(1/2)aT^2 ....(1)
Where S is height measured from ground.
substitute values in (1): S(20)=800+(0.8v)T+(-9.81)T^2 =>
v=((1/2)9.81(20^2)-800)/(0.8(20))=72.625 m/s for T=20 s
(ii) maximum height attained by the bomb
Differentiate (1) with respect to T, and equate to zero to find maximum
dS/dt=(vy)+aT=0 =>
Tmax=-(vy)/a = -0.8*72.625/(-9.81)= 5.9225 s
Maximum height,
Smax
=S(5.9225)
=800+(0.8*122.625)*(5.9225)+(1/2)(-9.81)(5.9225^2)
= 972.0494 m
(iii) Horizontal distance travelled by the bomb while air-borne
Horizontal velocity = vx = vcos(t) = 0.6v = 43.575 m/s
Horizontal distace travelled, Sx = (vx)T = 43.575*20 = 871.5 m
(iv) Velocity of the bomb when it strikes ground
vertical velocity with respect to time
V(T) =vy+aT...................(2)
Substitute values, vy=58.1 m/s, a=-9.81 m/s^2
V(T) = 58.130 + (-9.81)T =>
V(20)=58.130-(9.81)(20) = -138.1 m/s (vertical velocity at strike)
vx = 43.575 m/s (horizontal at strike)
resultant velocity = sqrt(43.575^2+(-138.1)^2) = 144.812 m/s (magnitude)
in direction theta = atan(43.575,138.1)
= 17.5 degrees with the vertical, downward and forward. (direction)