D. distance = 23 m, displacement = + 1 m
Explanation:
Let's remind the difference between distance and displacement:
- distance is a scalar, and is the total length covered by an object, counting all the movements in any direction
- displacement is a vector connecting the starting point and the final point of a motion, so its magnitude is given by the length of this vector, and its direction is given by the direction of this vector.
In this case, the distance covered by Karen is given by the sum of all its movements:

The displacement instead is given by the difference between the final point (1.0 m in front of the starting line) and the starting point (the starting line, 0 m):

Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
The last statement is false.
Explanation:
Photons (Electromagnetic radiation) are released when electrons drop from a higher energy lever to a lower energy level. Therefore the opposite insinuated by the last statement is wrong.
By law of refraction we know that image position and object positions are related to each other by following relation

here we know that



now by above formula


so apparent depth of the bottom is seen by the observer as h = 3.39 cm
Molarity and molality both describe the concentration of a substance in terms of moles.
Molarity describes the number of moles of a substance per unit of volume, typically per liter (mol/l).
Molality describes the number of moles per unit of mass, typically kilograms (mol/kg).
When determining the molality of a solution, mol/kg can be obtained by finding the number of moles in the substance, and dividing that number by the the total weight in kilograms of that substance.
When determining the molarity of a solution, mol/l can be obtained by dividing the number of moles in a substance by the total volume in liters of that substance.