Answer:
The height of the bridge is 78.4 m.
Explanation:
Given;
time of the stone motion off the bridge, t = 4.0 s
acceleration due to gravity, g = 9.8 m/s²
The height of the bridge is given by;
h = ut + ¹/₂gt²
where;
u is the initial velocity of the stone, u = 0
h = ¹/₂gt²
h = ¹/₂(9.8)(4)²
h = 78.4 m
Therefore, the height of the bridge is 78.4 m.
Answer:
4N
Explanation:
because the net force is greater in the right direction
Answer:
When an electric field exists in a conductor a current will flow.
This implies a voltage difference between two points on the conductor.
Electrostatics pertains to static charge distributions.
That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.
The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>