Answer: 37.981 m/s
Explanation:
This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:
<u>x-component:
</u>
(1)
Where:
is the point where the ball strikes ground horizontally
is the ball's initial speed
because we are told the ball is thrown horizontally
is the time since the ball is thrown until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the ball
is the final height of the ball (when it finally hits the ground)
is the acceleration due gravity
Knowing this, let's start by finding
from (2):
<u></u>
(3)
(4)
(5)
(6)
Then, we have to substitute (6) in (1):
(7)
And find
:
(8)
(9)
(10)
On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity
:
(11)
(12)
(13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.
However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).
A magnet has a South Pole and a North Pole. South Pole and South Pole can't connect to her other, same as North and North. The same poles push each other away.
South Pole and North Pole connect.
Answer:
a)
m/s
b)
Angular frequency = 
Explanation:
As we know

q is the charge on the electron =
C
B is the magnetic field in Tesla =
T
r is the radius of the circle =
m
mass of the electrons =
Kg
a)
Substituting the given values in above equation, we get -
m/s
b)
Angular frequency =
