Answer:
W = 53.6648 J
Explanation:
W = ∫ F * dr
F = < 4*x i , 3*y j > Newtons
dr = < dx, 0 >
Take the dot product:
F * dr = 4* x * dx
Now replacing numeric
W = ∫ 4 * x * dx , ║ x = ( 0 m ⇒ 5.18 m )
W = ¹ / ₂ * (4 N/m) * x ²
W = (2 N/m) * (5.18 m)²
W = 53.6648 J
Answer:
a) 2.7s
b) 29 m/s
Explanation:
The equation for the velocity and position of a free fall are the following
-(1)
- (2)
Since the hot-air ballon is <em>descending </em>at 2.1m/s and the camera is dropped at 42 m above the ground:


To calculate the time which it takes to reach the ground we use eq(2) with x=0, and look for the positive solution of t:

t = 2.71996
Rounding to two significant figures:
t = 2.7 s
Now we calculate the velocity the camera had just before it lands using eq(1) with t=2.7s
v = -28.782 m/s
Rounding to two significant figures:
v = -29 m/s
where the minus sign indicates the downwards direction
The relationship between electricity and magnetism is called<span> electromagnetism.</span>
Answer:
Light consists of photons, which are produced when an object's atoms heat up. Light travels in waves and is the only form of energy visible to the human eye.
Explanation:
gravitational force is the attraction force of earth on an object which is near the surface of earth
It will not depend on the velocity or acceleration of earth
So it will not change while an object is stationary or it is moving with some acceleration
So here we will say that force will remain the same
