The quantity of electricity : 2 Faraday = 193000 Coulomb
<h3>Further explanation</h3>
Given
2 moles of electrons
Required
The quantity of electricity
Solution
According to Faraday, the amount of current flowing in the electrolysis cell is closely related to the amount of substance that reacts
1 Faraday is the amount of electricity that is passed in the electrolysis cell to obtain 1 mole of electrons. 1 mole of electrons is equivalent to an electric charge of 96500 Coulombs.
The conversion / relationship can be stated as follows:
1 Faraday = 1 mole of electrons = 96500 Coulombs
1 faraday = coulomb / 96500
Can be formulated
Coulomb = Q = I. t so:

so for 2 moles electrons :
= 2 x 96500 C
= 193000 C
= 2 Faraday
Answer:
l=1
Explanation:
The angular momentum quantum number is a quantum number that describes the 'shape' of an orbital and tells us which subshells are present in the principal shell. A critical look at the electronic configuration of phosphorus at the ground state depicts the outermost electron to be in the P orbital where the angular quantum number ,l=1 .
1.2*104 is 12000 it is easy just try ur best
5.512 litres is the volume of 15.2 grams of sulphur dioxide gas at STP.
Explanation:
Data given:
mass of sulphur dioxide = 15.2 grams
conditions is at STP whech means volume = 22.4 litres
atomic mass of sulphur dioxide = 64.06 grams/mole
Number of moles is calculated as:
number of moles = 
Putting the values in the equation:
number of moles = 
= 0.23 moles
Assuming that sulphur dioxide behaves as an ideal gas, we can calculate the volume as:
When 1 mole of sulphur dioxide occupies 22.4 litres at STP
Then 0.23 moles of sulphur dioxide occupies 22.4 x 0.23
= 5.152 litres is the volume.
Answer:
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Explanation:

1 Ton = 907185 grams
Mass of copper oxide = 1.0 Ton = 907185 grams
Moles of copper oxide =
According to reaction, 2 moles of copper oxide reacts with 1 mole of carbon.
Then 11403.95 moles of copper oxide will react with:
of carbon
Mass of 5,701.98 moles of carbon:

Mass of coke = x
Mass of carbon = 68,423.75 g
Percentage of carbon in coke = 95%


The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.