Answer:
KE = 0.5 * m * v², where: m - mass, v - velocity.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.
Answer:
A quantity that does not depend on the direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude, and a direction. Scalar quantities have only a magnitude. When comparing two vector quantities of the same type, you have to compare both the magnitude and the direction.
Scalar quantities only have magnitude (size). Scalar quantities include distance...
A quantity that is specified by both size and direction is a vector. Displacement includes both size and direction and is an example of a vector. However, distance is a physical quantity that does not include a direction and isn't a vector.
Explanation:
hope this helps...
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
<u>Thermal energy</u><u> from the room-temperature water will continuously flow to the boiling water.</u>
- The second law states, in a straightforward manner, that heat cannot naturally go "uphill."
- When a pan of boiling water and a pan of ice are in touch, the hot water cools and the ice melts and warms up.
<h3>
THE FIRST LAW OF THERMODYNAMICS</h3>
- Adiabatic Process - is a procedure that is carried out without the system's heat content changing.
- Water is heated to a temperature of 1000C during the boiling process, making it an isothermal process. As steam, the excess heat leaves the system.
Learn more about first law of thermodynamics brainly.com/question/3808473
#SPJ4