1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
3 years ago
9

what kind of weather would u assosiate with higher perssure system? How does the density, humidity and air motion compare to tha

t of low pressure system?
Physics
1 answer:
expeople1 [14]3 years ago
4 0

Answer:

Low pressure systems typically arrive with storms and clouds. Air motion is usually upwards, as heated are is less dense and more buoyant than cooler air. A high pressure system is typically cooler than its counter-part, and skies are usually clear. Low pressure systems carry more water vapor due to rising hot air cooling and condensing.

You might be interested in
How does the height of a ramp affect the distance that a toy car will travel?
lyudmila [28]

Answer:

the higher the ramp the less distance it will travel

8 0
3 years ago
In the physics lab, a block of mass M slides down a frictionless incline from a height of 35cm. At the bottom of the incline it
bogdanovich [222]

Solution :

Given :

M = 0.35 kg

$m=\frac{M}{2}=0.175 \ kg$

Total mechanical energy = constant

or $K.E._{top}+P.E._{top} = K.E._{bottom}+P.E._{bottom}$

But $K.E._{top} = 0$ and $P.E._{bottom} = 0$

Therefore, potential energy at the top = kinetic energy at the bottom

$\Rightarrow mgh = \frac{1}{2}mv^2$

$\Rightarrow v = \sqrt{2gh}$

      $=\sqrt{2 \times 9.8 \times 0.35}$      (h = 35 cm = 0.35 m)

      = 2.62 m/s

It is the velocity of M just before collision of 'm' at the bottom.

We know that in elastic collision velocity after collision is given by :

$v_1=\frac{m_1-m_2}{m_1+m_2}v_1+ \frac{2m_2v_2}{m_1+m_2}$

here, $m_1=M, m_2 = m, v_1 = 2.62 m/s, v_2 = 0$

∴ $v_1=\frac{0.35-0.175}{0.5250}+\frac{2 \times 0.175 \times 0}{0.525}

      $=\frac{0.175}{0.525}+0$

     = 0.33 m/s

Therefore, velocity after the collision of mass M = 0.33 m/s

 

3 0
3 years ago
What will happen to force?
telo118 [61]

Answer:

it will double because im right

8 0
3 years ago
Gravitational notes of physics ​
Pachacha [2.7K]

Answer:

Every object in the universe attracts other object by a force of attraction, called gravitation, which is directly proportional to the product of masses of the objects and inversely proportional to the square of distance between them. This is called Law of Gravitation or Universal Law of Gravitation.

Let masses (M) and (m) of two objects are distance (d) apart. Let F be the attractional force between two masses.

Importance of The Universal Law of Gravitation

It binds us to the earth.

It is responsible for the motion of the moon around the earth.

It is responsible for the motion of planets around the Sun.

Gravitational force of moon causes tides in seas on earth.

Free Fall

When an object falls from any height under the influence of gravitational force only, it is known as free fall.

Acceleration Due to Gravity

When an object falls towards the earth there is a change in its acceleration due to the gravitational force of the earth. So this acceleration is called acceleration due to gravity.

The acceleration due to gravity is denoted by g.

The unit of g is same as the unit of acceleration, i.e., ms−2

Mathematical Expression for g

From the second law of motion, force is the product of mass and acceleration.

F = ma

For free fall, acceleration is replaced by acceleration due to gravity.

Therefore, force becomes:

F = mg ….(i)

But from Universal Law of Gravitation,

Factors Affecting the Value of g

As the radius of the earth increases from the poles to the equator, the value of g becomes greater at the poles than at the equator.

As we go at large heights, value of g decreases.

To Calculate the Value of g

Value of universal gravitational constant, G = 6.7 × 10–11 N m2/ kg2,

Mass of the earth, M = 6 × 1024 kg, and

Radius of the earth, R = 6.4 × 106 m

Putting all these values in equation (iii), we get:

Thus, the value of acceleration due to gravity of the earth, g = 9.8 m/s2.

Difference between Gravitation Constant (G) and Gravitational Acceleration (g)

S. No.

Gravitation Constant (G)

Gravitational acceleration (g)

1.

Its value is 6.67×10-11Nm2/kg2.

Its value is 9.8 m/s2.

2.

It is a scalar quantity.

It is a vactor quantity.

3.

Its value remains constant always and everywhere.

Its value varies at various places.

4.

Its unit is Nm2/kg2.

Its unit is m/s2.

Motion of Objects Under the Influence of Gravitational Force of the Earth

Let an object is falling towards earth with initial velocity u. Let its velocity, under the effect of gravitational acceleration g, changes to v after covering the height h in time t.

Then the three equations of motion can be represented as:

Velocity (v) after t seconds, v = u + ght

Height covered in t seconds, h = ut + ½gt2

Relation between v and u excluding t, v2 = u2 + 2gh

The value of g is taken as positive in case of the object is moving towards earth and taken as negative in case of the object is thrown in opposite direction of the earth.

Mass & weight

Mass (m)

The mass of a body is the quantity of matter contained in it.

Mass is a scalar quantity which has only magnitude but no direction.

Mass of a body always remains constant and does not change from place to place.

SI unit of mass is kilogram (kg).

Mass of a body can never be zero.

Weight (W)

The force with which an object is attracted towards the centre of the earth, is called the weight of the object.

Now, Force = m × a

But in case of earth, a = g

∴ F = m × g

But the force of attraction of earth on an object is called its weight (W).

∴ W = mg

As weight always acts vertically downwards, therefore, weight has both magnitude and direction and thus it is a vector quantity.

The weight of a body changes from place to place, depending on mass of object.

The SI unit of weight is Newton.

Weight of the object becomes zero if g is zero.

Weight of an Object on the Surface of Moon

Mass of an object is same on earth as well as on moon. But weight is different.

Weight of an object is given as,

Hence, weight of the object on the moon = (1/6) × its weight on the earth.

Try the following questions:

Q1. State the universal law of gravitation.

Q2. When we move from the poles to the equator, the value of g decreases. Why?

Q3. If two stones of 150 gm and 500 gm are dropped from a height, which stone will reach the surface of the earth first and why ?

Q4. Differentiate between weight and mass.

Q5. Why is the weight of an object on the moon 1/6th its weight on the earth??

7 0
3 years ago
True or False—An external force is defined as a force generated outside the system of interest that acts on an object inside the
inn [45]

Answer:

An external force is a force that acts on an object within the system from outside the system. This type of force is different than an internal force, which acts between two objects that are both within the system. The net external force combines these two definitions; it is the total combined external force

Explanation:

ig the answer is true

5 0
3 years ago
Other questions:
  • Identify two types of nuclear reactions in which the equations E= mc^2 applies.
    5·1 answer
  • a bus travels 4 km due north and 3 km due west going from bus station a to bus station b. the magnitude of the bus displacement
    7·1 answer
  • Two elevators begin descending from the same height. Elevator A has descended 4 feet after one second, 9 feet after two seconds,
    10·2 answers
  • Mitchell records the amount of time a toy car takes to travel down a ramp one time for each of four slope angles. His lab
    8·1 answer
  • A ball is thrown straight up. At what point does the ball have the most energy? Ignore air resistance.
    11·1 answer
  • The hardest known natural material is _____. <br> jade<br> quartz<br> diamond<br> talc
    13·2 answers
  • True or False: Our food has potential energy?
    7·2 answers
  • why does the force of air resistance affect the motion of a person traveling at high speed more than a person walking across the
    5·2 answers
  • If the weight of a person is 500 newton what is his mass on the earth ?
    5·1 answer
  • HELP ME PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!