Answer:
Explanation:
Remark
This is a second class lever. It is much more efficient than the fishing pole problem. All distances are measured from the pivot in these kinds of questions.
Givens
d1 = 1.5
d2 = ?
m1 = 50 kg
m2 = 30 kg
The lighter child will have to sit further away from the pivot to make the two conditions equal.
Formula
d1*m1 = d2*m2
1.5*50 = d2 * 30
75 = 30 * d2
75/30 = d2
d2 = 2.5
Remark
Notice that the distance is longer for the lighter child. The fact that these are masses and not forces does not matter, but you should take note of it. There is a difference between masses and forces. See the fishing pole problem.
Answer to the multiple Choice question. No motion on this kind of problem means equal moments. The answer is D
Problem 2
1) The wheels are further apart making B more stable. The wider the distance the wheels are apart, the harder it would be to tip the concrete mixer over
2) The center of gravity is lower. The higher the force is the more chance you have of exerting an external force to tip the mixer over.
Explanation:
the vehicles displacement, since displacement deals with position
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.
This question involves the concepts of Newton's Second Law of Motion.
The acceleration of the bowling ball will be "0.67 m/s²".
<h3>Newton's Second Law of Motion</h3>
According to Newton's Second Law of Motion, when an unbalanced force is applied on an object, it produces an acceleration in it, in the direction of the applied force. This acceleration is directly proportional to the force applied and inversely proportional to the mass of the object. Mathematically,

where,
- a = acceleration = ?
- F = Magnitude of the applied force = 6 N
- m = Mass of the ball = 9 kg
Therefore,

a = 0.67 m/s²
Learn more about Newton's Second Law of Motion here:
brainly.com/question/13447525
#SPJ1