Answer:
64,433.6 Joules
Explanation:
<u>We are given</u>;
- Volume of water as 220 mL
- Initial temperature as 30°C
- Final temperature as 100°C
- Specific heat capacity of water as 4.184 J/g°C
We are required to calculate the amount of heat required to raise the temperature.
- We know that amount of heat is calculated by;
Q = mcΔT , where m is the mass, c is the specific heat, ΔT is the change in temperature.
Density of water is 1 g/mL
Thus, mass of water is 220 g
ΔT = 100°C - 30°C
= 70°C
Therefore;
Amount of heat, Q = 220g × 4.184 J/g°C × 70°C
= 64,433.6 Joules
Thus, the amount of heat required to raise the temperature of water is 64,433.6 Joules
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Well I can’t see the rocks but, to determine the relative age of different rocks, geologists start with the assumption that unless something has happened, in a sequence of sedimentary rock layers, the newer rock layers will be on top of older ones.
Hope this helped! <3
Answer :
Example of polar covalent molecules H-O-H(water), ammonia
Explanation:
The presence of intermolecular Hydrogen bonding makes the boiling point of water unexpectedly high, and the polar covalent nature makes it dissolve polar solute/compound
Answer:
"Electronegativity" decrease moving from the bottom of Group 3 to the top of Group 3
Explanation:
Electronegativity of an element tell us about the ability of an atom to attract the electrons towards the atom. It depends upon the atomic number and also the distance between the valence electrons that is present in the charged nucleus. The electronegativity will increase from left to right while moving in the periodic table. Electronegativity decreases from bottom to top. To measure the electronegativity pauling scale is used.