Answer:
(a): The resultant force acting on the object are F= (5.99 i + 14.98 j).
(b): The magnitude of the resultant force are F= 16.4 N < 68.19º .
Explanation:
m= 3kg
a= 2 i + 5 j = 5 .38 < 68.19 º
F= m * a
F= 3* ( 5.38 < 68.19º )
F= 16.4 N < 68.19º
Fx= F * cos(68.19º)
Fx= 5.99
Fy= F* sin(68.19º)
Fy= 14.98
Answer : The correct option is, (C) 17 m/s
Explanation :
Formula used :

where,
K.E = kinetic energy = 6.8 J
m = mass of object = 46 g = 0.046 kg (1 kg = 1000 g)
v = velocity
Now put all the given values in the above formula, we get:




Therefore, the ball's velocity be as it leaves the cannon is, 17 m/s
Wound it be one that dissolves ?
Answer:
The pressure is 
The temperature is 
Explanation:
Generally Gibbs free energy is mathematically represented as

Where E is the enthalpy
PV is the pressure volume energy (i.e PV energy)
S is the entropy
T is the temperature
For stability to occur the Gibbs free energy must be equal to zero
Considering Diamond
So at temperature of T = 300 K

making P the subject

Now substituting 300 K for T , 2900 J for E ,
for V and
for S


The negative sign signifies the direction of the pressure
Given that 
making T the subject

Substituting into the equation

