Complete Question
A student is extracting caffeine from water with dichloromethane. The K value is 4.6. If the student starts with a total of 40 mg of caffeine in 2 mL of water and extracts once with 6 mL of dichloromethane
The experiment above is repeated, but instead of extracting once with 6 mL the extraction is done three times with 2 mL of dichloromethane each time. How much caffeine will be in each dichloromethane extract?
Answer:
The mass of caffeine extracted is 
Explanation:
From the question above we are told that
The K value is 
The mass of the caffeine is 
The volume of water is 
The volume of caffeine is 
The number of times the extraction was done is n = 3
Generally the mass of caffeine that will be extracted is
![P = m * [\frac{V}{K * v_c + V} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%20m%20%20%2A%20%20%5B%5Cfrac%7BV%7D%7BK%20%2A%20%20v_c%20%2B%20V%7D%20%5D%5E3)
substituting values
![P = 40 * [\frac{2}{4.6 * 2 + 2} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%2040%20%20%20%2A%20%20%5B%5Cfrac%7B2%7D%7B4.6%20%2A%20%202%20%2B%202%7D%20%5D%5E3)

D.
This is self-regulation because when the population of the insects becomes too large, it regulates itself and starts to decrease due to a shortage of resources.
Answer:
Hydrogen = 2.5 * 10^21
Explanation:
Chemical Formula Glucose: C₆H₁₂O₆
One of the ways you could do this is to notice that for every carbon atom there are two Hydrogen atoms. You can state this more formally by using the formula to set up a ratio: 12/6 = hydrogen to Carbon
So if there are 1.250 * 10^21 Carbon atoms in the Glucose sample, then there will be twice as many hydrogen atoms.
H = 2 * 1.25 * 10^21 = 2.5 * 10^21 atoms
You could do this more formally by setting up a proportion.
6 Carbon / 12 Hydrogen = 1.25*10^21 / x Cross Multiply
6*x = 12 * 1.25*10^21 Combine the right
6x = 1.5 * 10^22 Divide by 6
x = 2.5 * 10^21
Answer:
Volume = 35.2×220×6.0 = 46464 centimeters³
Explanation: