Answer:
23.0733 L
Explanation:
The mass of hydrogen peroxide present in 125 g of 50% of hydrogen peroxide solution:
Mass = 62.5 g
Molar mass of = 34 g/mol
The formula for the calculation of moles is shown below:
Thus, moles are:
Consider the given reaction as:
2 moles of hydrogen peroxide decomposes to give 1 mole of oxygen gas.
Also,
1 mole of hydrogen peroxide decomposes to give 1/2 mole of oxygen gas.
So,
1.8382 moles of hydrogen peroxide decomposes to give
So,
Pressure = 746 / 760 atm = 0.9816 atm
Temperature = 27 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (27 + 273.15) K = 300.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9816 atm × V = 0.9191 mol × 0.0821 L.atm/K.mol × 300.15 K
<u>⇒V = 23.0733 L</u>
Waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths
For example we are going to use this unbalanced chemical reaction:
H₂ + O₂ → H₂O.
First, calculate number of atoms (hydrogens and oxygens) on left and right. There is two oxygen and two hydrogen on left and two hydrogen and one oxygen on right.
You can not change molecular formula of compound, only you can put coefficient in fron of compound to balance reaction.
Put 2 in front water to balance oxygen (now you have two oxygens on left and right). But now you have four hydrogens on right, so you must put 2 in fron hydrogen on the left.
2H₂ + O₂ → 2H₂O.
Answer:
The answer to your question is the letter C. three times as much
Explanation:
Data
First step = 6 m
Second step = 18 m
Potential energy is the energy stored that depends on its position.
Formula
Pe = mgh
m = mass; g = gravity; h = height
Potential energy of the first step
Pe1 = 6mg
Potential energy of the second step
Pe2 = 18mg
-Divide the Pe2 by the Pe1
Pe2/Pe1 = 18mg/6mg
= 3
I am sorry i wish i could help you but i dont know the answer either.