Answer:
21 g/mL
Explanation:
To solve this problem, first look at the density equation, which is D=M/V, which D stands for density, M stands for mass, and V stands for volume. When you substitute in the variables, you get D=17.5/.82, which is equivalent to 21.34. However, since we need to pay attention to the sig fig rules for multiplying, we need to have the same amount of sig figs as the value with the least amount of sig figs, which is the number .82. .82 has two sig figs, so you round down. Your answer will be 21 g/mL.
For an object to conduct electricity it should have free or delocalised electrons that are free to pass the charge and hence take part in conducting electricity.
From the given choices
Chlorine is a halogen existing as a diatomic gas. Iodine too is a halogen and 2 Iodine atoms held together by covalent bond. Cl - Cl bonds and I-I bonds are covalent bonds. the outer electrons of Cl and I take part in covalent bonds therefore they are fixed and not free to move about. therefore no free electrons to conduct electricity.
Sulfur is a solid that too is held together by covalent bonds so it does not have free electrons to conduct electricity.
Silver is a metal and a general property of metals are their ability to conduct electricity.
metal structure are metal ions tightly packed together. when the metal atoms are tightly packed their valence electrons are removed and delocalised. Positively charged metal ions are embedded in a sea of delocalised electrons.
therefore there are delocalised electrons that can conduct electricity
answer is 3) silver
Answer:
100 degree celcius, because it is the melting point of ice ob
Answer:
alright that sounds like a recipe i gota try
The question is incomplete but i will try to offer as much help as i can.
Answer:
See explanation
Explanation:
The electron was discovered by J.J Thompson. His model of the atom was called the plum-pudding model of the atom.
He discovered that cathode rays being negatively charged particles were deflected by a magnet in just the same way as moving, negative electrically charged particles.
Similarly, in an electric field, they are deflected towards the positive plate of the electrostatic field which shows that they are negatively charged.