Answer:
We first to know that if the wheel rotates from rest means that at t=0 the velocity and the angle rotated is 0.
Then, we know:

Integrating 2 times, we have:

For the first 27.9 s, we have:
w = 37.107 rad/s
angle = 517.6426 rad
For the next seconds, according to the text, the angular velocity is constant so
w = 37.107 rad/s and hence, integrating:

Then, the time remaining is:
53.5 - 27.9 = 25.6
So for the next 25.6 seconds we have:

Finally, we add the 2 angles and we have as a result:

Complete Question:
Gauss's law:
Group of answer choices
A. can always be used to calculate the electric field.
B. relates the electric field throughout space to the charges distributed through that space.
C. only applies to point charges.
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
E. relates the surface charge density to the electric field.
Answer:
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Wouldn't it be the employee? Because the employee has to adjust to the needs of his/her supervisor. If the supervisor wants 100 boxes the employee has to make those 100 boxes and so on and so forth.
Answer:
c.
Explanation:
We are given that
Acceleration due to gravity on the moon=
Acceleration due to gravity on the earth=

Net force due to am on an object on moon=
There is no friction and no drag force and there is no gravity involved
Then, the force acting on an object on earth=
(given)


Hence, option c is true.