Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
Newton’s Second Law concerns the generation of force based on an object’s mass and acceleration, as described by the equation F=ma.
Hope this helps!
Answer:
Option A
Explanation:
The Equation represents the displacement of the object which is represented by x

so,
means when time is zero so we replace t with zero in the equation,

now for v which is velocity we need to differentiate the function as the formula for velocity is rate of change of displacement over time so we derivate the equation once and get,

now for
we insert t = 0 and get

now for a which is acceleration the formula of acceleration is rate of change of velocity over time, so we differentiate the the equation of v(velocity) once or the equation of x(displacement) twice so now we get,

so Option A is your answer.
Remember derivative of a constant is always zero because a constant value has no rate of change has its a constant hence the derivative is 0
Answer:
22,800 years
Explanation:
Half life equation:
A = A₀ (½)^(t / T)
where A is the final amount,
A₀ is the initial amount,
t is time,
and T is the half life.
0.0625 = (½)^(t / 5700)
log 0.0625 = (t / 5700) log 0.5
4 = t / 5700
t = 22,800
It takes 22,800 years.