To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


Answer:
The time elapses until the boat is first at the trough of a wave is 4.46 seconds.
Explanation:
Speed of the wave, v = 59 km/h = 16.38 m/s
Wavelength of the wave, 
If f is the frequency of the wave. The frequency of a wave is given by :

The time period of the wave is given by :

We need to find the time elapses until the boat is first at the trough of a wave. So, the time will be half of the time period of the wave.

Hence, this is the required solution.
Answer:
the answer is 5k in the bottle have
<span>rocky surface
(outer plants are made of gas)</span>
Metal detectors work by transmitting an electromagnetic field from the search coil into the ground. Any metal objects (targets) within the electromagnetic field will become energised and retransmit an electromagnetic field of their own.