Answer:
Distillation will generate the most cyclohexene.
Explanation:
Let us assume following attached reaction for the synthesis of cyclohexene from cyclohexanol which attains equilibrium after certain time.
As shown in figure the cyclohexanol upon treatment with phosphoric acid undergoes dehydration reaction (removal of water) and produces cyclohexene. On the other hand cyclohexene reacts with water (hydration reaction) and produces cyclohexanol.
Now, if this reaction is allowed in a single flask it will attain equilibrium and will not generate the cyclohexene in high quantity. On the other hand if we apply <em>Le Chatelier's principle</em> ( <u><em>removal of product moves the equilibrium in right direction</em></u>) and distillate cyclohexene (boiling the cyclohexene to convert it into vapors and then collect it after condensation) will move the reaction in forward direction and will allow us to generate cyclohexene in high amounts.
Answer:30 L
Explanation:
Initial Volume
=
V
1
=
60
l
i
t
e
r
Initial Temperature
=
T
1
=
546
K
Final Temperature
=
T
2
=
273
K
Final Vloume
=
V
2
=
?
?
Sol:-
Since the pressure is constant and the question is asking about temperature and volume, i.e,
V
1
T
1
=
V
2
T
2
⇒
V
2
=
V
1
⋅
T
2
T
1
=
60
⋅
273
546
=
60
2
=
30
l
i
t
e
r
⇒
V
2
=
30
l
i
t
e
r
Hence the new volume of the gas is
30
l
i
t
e
r
Answer : The pressure of hydrogen gas is, 739.3 torr
Explanation :
As we are given:
Vapor pressure of water = 18.7 torr
Barometric pressure = 758 torr
Now we have to calculate the pressure of hydrogen gas.
Pressure of hydrogen gas = Barometric pressure - Vapor pressure of water
Pressure of hydrogen gas = 758 torr - 18.7 torr
Pressure of hydrogen gas = 739.3 torr
Therefore, the pressure of hydrogen gas is, 739.3 torr