Answer:
d. 6.0 m
Explanation:
Given;
initial velocity of the car, u = 7.0 m/s
distance traveled by the car, d = 1.5 m
Assuming the car to be decelerating at a constant rate when the brakes were applied;
v² = u² + 2(-a)s
v² = u² - 2as
where;
v is the final velocity of the car when it stops
0 = u² - 2as
2as = u²
a = u² / 2s
a = (7)² / (2 x 1.5)
a = 16.333 m/s
When the velocity is 14 m/s
v² = u² - 2as
0 = u² - 2as
2as = u²
s = u² / 2a
s = (14)² / (2 x 16.333)
s = 6.0 m
Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.
The correct option is d
The population comes to be dominated by smaller, slower-growing individuals
Answer:
The melting point will be lowered and broadened.
Explanation:
The melting point of a substance is the temperature at which the substance changes state from solid to liquid. The incomplete drying of a sample may result in the presence of impurities. There is presence of solid sample in the solution that fails to dry. The solid sample is not fully crystallized from the solvent or any other liquid with which it can form a true solution. The presence of these impurities in a sample for example, the incomplete removal of a recrystallization solvent cause the melting point to both lowered and broadened.
The given in this problem is that two balls are thrown at different times, different heights and velocities. A blue ball is thrown upward at a specific velocity at a lower altitude while a red ball is thrown downwards at a specific speed and at a higher height. In this case, we are asked here to describe the graph of the behavior of the balls as a function of time. The x-axis then is time while the y-axis is the velocity of the ball. The blue ball has a quadratic function while the red ball is more or less exponential. See the attached figure for reference.
Answer:
the resistance of the second wire is 1 ohm.
Explanation:
Given;
cross sectional area of the first wire, A₁ = 5.00 x 10⁶ m²
resistance of the first wire, R₁ = 1.75 ohms
cross sectional area of the second wire, A₂ = 8.75 x 10⁶ m²
resistance of the second wire, R₂ = ?
The resistance of a wire is given as;
R ∝ 
Since the length of the two wires is constant
R₁A₁ = R₂A₂

Therefore, the resistance of the second wire is 1 ohm.