Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)
Radio waves have longer wavelengths and lower frequencies than microwaves.
infrared is longer wavelengths and lower frequencies than UV light
180 pounds (lb) converts to 81.647 kilograms (kg).
Answer:
0.0025116weber/m²
Explanation:
Magnetic field density (B) is the ratio of the magnetic flux (¶) through the loop to its cross sectional area (A).
Mathematically;
B = ¶/A
¶ = BA
Given B = 0.23Tesla which is the magnitude of the magnetic field
Dimension of the rectangular loop = 7.8 cm by 14 cm
Area of the rectangular loop perpendicular to the field B = 7.8cm×14cm
= 109.2cm²
Converting this value to m²
Area of the loop = 109.2 × 10^-4
Area of the loop = 0.01092m²
Magneto flux = 0.23×0.01092
Magnetic flux = 0.0025116weber/m²
Answer:
Cruising at 35,000 feet in an airliner, straight toward the east,
at 500 miles per hour
Explanation: