The reason why a wave get taller as it gets closer to shore is that the shallow water at the bottom of the wave makes the wave length smaller. Option B
<h3>What is a wave?</h3>
A wave is a disturbance that occurs along a medium which transmits energy. Now we now that waves travel from place to place. The horizontal distance that is travelled by a wave is what we call the wavelength of the wave.
As the wave approaches the shore, the wave tends to slow down because it is dragged from beneath. In the process, the wave grows taller. Thus, the reason why a wave get taller as it gets closer to shore is that the shallow water at the bottom of the wave makes the wave length smaller. Option B
Learn more about wavelength:brainly.com/question/13533093
#SPJ1
Answer: Temperature = T, unknown
Saturated Solution, NH4Cl concentration = 60g/100g H2O = 0.6g NH4Cl/g H2O
Assume density of H2O = 1 g/ml
m = 0.6g NH4Cl/g H2O / 1 g/ml
m = 0.6g NH4Cl/ml
See the table of saturated solutions and identify the temperature at which the concentration of NH4Cl is 60g/100g H2O.
Explanation: The line on the graph on reference table G indicates a saturated solution of NH4CL as a concentration of 60. g NH4 Cl/100. g H2O
Answer:
Brackett Series (n = 4)
Explanation:
The least energetic line of Hydrogen atom lies in <em>Brackett Series </em>when n = 4 because these are least energetic, have longer wavelengths and lies in Infrared region of spectrum. No traces of <em>Pfund series </em>are formed by H=atoms.
Answer: 9.68 x 10^10 grams.
Explanation:
Given that:
Mass of CO2 = ?
Number of molecules of CO2 = 2.2x10^9 molecules
Molar mass of CO2 = ? (let unknown value be Z)
For the molar mass of CO2: Atomic mass of Carbon = 12; Oxygen = 16
= 12 + (16 x 2)
= 12 + 32 = 44g/mol
Apply the formula:
Number of molecules = (Mass of CO2 in grams/Molar mass)
2.2x10^9 molecules = Z/44g/mol
Z = 2.2x10^9 molecules x 44g/mol
Z = 9.68 x 10^10g
Thus, the mass of 2.2x10^9 molecules of CO2 is 9.68 x 10^10 grams.
B) They have protons that are identical to the protons of all other elements