1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
13

A 525 kg satellite is in a circular orbit at an altitude of 575 km above the Earth's surface. Because of air friction, the satel

lite eventually falls to the Earth's surface, where it hits the ground with a speed of 1.90 km/s. How much energy was transformed into internal energy by means of air friction? 14457750000 Incorrect: Your answer is incorrect.%20orbit%20at%20an%20altitude%20of%20575%20km%20above%20the%20Earth's%20surface.%20Because%20of%20air%20friction%2C%20the%20satellite%20eventually%20falls%20to%20the%20Earth's%20surface%2C%20where%20it%20hits%20the%20ground%20with%20a%20speed%20of%201.90%20km%2Fs.%20How%20much%20energy%20was%20transformed%20into%20internal%20energy%20by%20means%20of%20air%20friction%3F%20%20%20%20J/study?trackid=ae7684c4b7d0&strackid=e93f14d66685&event=enter_submit#p=1
Physics
1 answer:
Dafna1 [17]3 years ago
8 0

Answer:

1.69\cdot 10^{10}J

Explanation:

The total energy of the satellite when it is still in orbit is given by the formula

E=-G\frac{mM}{2r}

where

G is the gravitational constant

m = 525 kg is the mass of the satellite

M=5.98\cdot 10^{24}kg is the Earth's mass

r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

r=R+h=6370 km +575 km=6945 km=6.95\cdot 10^6 m

So the initial total energy is

E_i=-(6.67\cdot 10^{-11})\frac{(525 kg)(5.98\cdot 10^{24} kg)}{2(6.95\cdot 10^6 m)}=-1.51\cdot 10^{10}J

When the satellite hits the ground, it is now on Earth's surface, so

r=R=6370 km=6.37\cdot 10^6 m

so its gravitational potential energy is

U = -G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(525 kg)(5.98\cdot 10^{24}kg)}{6.37\cdot 10^6 m}=-3.29\cdot 10^{10} J

And since it hits the ground with speed

v=1.90 km/s = 1900 m/s

it also has kinetic energy:

K=\frac{1}{2}mv^2=\frac{1}{2}(525 kg)(1900 m/s)^2=9.48\cdot 10^8 J

So the total energy when the satellite hits the ground is

E_f = U+K=-3.29\cdot 10^{10}J+9.48\cdot 10^8 J=-3.20\cdot 10^{10} J

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

\Delta E=E_i-E_f=-1.51\cdot 10^{10} J-(-3.20\cdot 10^{10} J)=1.69\cdot 10^{10}J

You might be interested in
I have no idea what to do. Plz help!
aleksklad [387]
Work is (force) times (distance). For Amy, you know both of them, and you can easily multiply them to find the amount of work. For Joe, the distance is zero, which should tell you all you need to know.
7 0
3 years ago
Every complete circuit includes a device that provides emf. What type of quantity?
laiz [17]

Answer:

energy per unit charge

Explanation:

EMF is energy per unit charge and has unit joule/ coulomb, where joule is unit of energy and coulomb is the unit of charge.

6 0
3 years ago
If an object is an irregularly shaped solid and it is dropped into a graduated cylinder and it displaces 25 mL of water and has
zavuch27 [327]

Answer:

1250

Explanation:

7 0
2 years ago
Help please asap due 20 minutes please help me ​
Finger [1]
Did you turn it in yet?
4 0
3 years ago
The temperature of 1 m^3 of water is decreased by 10°C. If this thermal energy is used to lift the water vertically against grav
Rama09 [41]

Answer:

h = 4271.43 m

Explanation:

given,

Volume of the water = 1 m³

temperature decrease by = 10°C

heat removed from water

Q = m c ΔT                            

Q = ρ V c ΔT                            

   = 1000 × 1 × 4186 × 10

   = 4.186 × 10⁷ J

energy is used to do work to move the water against its weight

Q = force  × displacement

4.186 × 10⁷ J =  m g × h                    

4.186 × 10⁷ J =  1000 × 1 × 9.8 × h                

h = 4271.43 m                                

hence, the change in height of is equal to h = 4271.43 m

8 0
3 years ago
Other questions:
  • Letters A, B, C, and D represent locations on a bar magnet. Which location has the greatest magnetic force?
    15·2 answers
  • An ac generator consists of a coil with 40 turns of wire, each with an area of 0.06 m2. The coil rotates in a uniform magnetic f
    13·1 answer
  • If earth did not rotate how would air at the equator move?
    15·2 answers
  • Holden is trying to determine the velocity of his race car. He went 20 meters east, turned around, and went 40 meters west. He t
    7·2 answers
  • Can I get a direct answer please??
    12·1 answer
  • Unlike most real bulbs, the resistances of the bulbs in the questions below do not change as the current through them changes. A
    15·1 answer
  • A 60.0-kg ball of clay is tossed vertically in the air with an initial speed of 4.60 m/s. Ignoring air resistance, what is the c
    9·1 answer
  • the plane prepares to land. its velocity changes from 155 m/s to 140ms over 2 minutes calculate the acceleration of the plane
    15·1 answer
  • (answer only if you know the answer or I'll report) Help me please solve it w steps​
    10·1 answer
  • Because the time was the same for each segment you know the speed was the same for each segment
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!