Here we will say that there is no external torque on the system so we will have

here we know that

where we know that

Also we know that

initial angular speed will be

now from above equation



now we have

so final speed will be 2.41 rad/s
Answer:
Explanation:
The velocity of the vehicle would increase because the the tanks (when filled with water) must have exerted a force which would reduce the velocity of the vehicle at a certain pressure on the gas pedal. Note that force equals mass multiplied by acceleration; as the mass decreases, so the force decreases. Thus, when the mass exerted by this tanks (on the vehicle) decrease as a result of the hole punctured in them, the force exerted by the tanks would also decrease causing an increase in velocity of the pick up truck when the same pressure is applied on the gas pedal throughout (before and after the puncture).
The conservation law that applied here is the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. This is because the energy the vehicle used in carrying the load (the tanks) was transformed to the energy that resulted in increasing it's velocity (no new energy was formed as the pressure on the gas pedal remained the same).
Answer : When we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
As the given reaction is an exothermic reaction in which the heat is released during a chemical reaction. That means the temperature is decreased on the reactant side.
For an exothermic reaction, heat is released during a chemical reaction and is written on the product side.

If the temperature is increases in the equilibrium then the equilibrium will shift in the direction where, temperature is getting decreased. Thus, the reaction will shift to the left direction i.e, towards the reactant.
Hence, when we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.