Due to the moon's gravitational force and inertias counterbalance.
Answer:
See explanation
Explanation:
We have a mass
revolving around an axis with an angular speed
, the distance from the axis is
. We are given:
![\omega = 10 [rad/s]\\r=0.5 [m]\\m=13[Kg]](https://tex.z-dn.net/?f=%5Comega%20%3D%2010%20%5Brad%2Fs%5D%5C%5Cr%3D0.5%20%5Bm%5D%5C%5Cm%3D13%5BKg%5D)
and also the formula which states that the kinetic rotational energy of a body is:
.
Now we use the kinetic energy formula

where
is the tangential velocity of the particle. Tangential velocity is related to angular velocity by:

After replacing in the previous equation we get:

now we have the following:

therefore:

then the moment of inertia will be:
![I = 13*(0.5)^2=3.25 [Kg*m^2]](https://tex.z-dn.net/?f=I%20%3D%2013%2A%280.5%29%5E2%3D3.25%20%5BKg%2Am%5E2%5D)
Option c. are large
Igneous rocks are crystalline solids which are formed after the magma cools. The sizes vary greatly depending on how quickly the magma cooled. The slower the cooling, the larger the crystals in the final rock. They cooled at depth in the crust where they were insulated by layers of rock and sediment.
Answer:
Magnets strongly attract materials which already themselves have magnetic domains. They do not significantly attract many metals like gold, aluminum, silver, and even some types of high-chromium stainless-steel, which lack such domains. In fact, pure gold is slightly repelled.
Explanation:
Answer:
none
Explanation:
~both of them show to the nearest metre.
~millimeter has (mm) unit eg 0.7mm