Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

Answer: B. II and III only
Explanation:
Let’s begin by explianing what energy is: the ability of matter to produce work in the form of movement, light, heat, among others. In this sense, there are several types of energy, but we will talk especifically in this case about <u>kinetic energy</u> and <u>potential energy</u>.
<u>Kinetic energy </u>is the energy an object or body has due to its movement and depends on the mass and velocity of the object or body.
To understande it better: If an object is at rest, its velocity is null and it does not have kinetic energy, however, if the object is moving, then it has kinetic energy.
On the other hand, <u>Potential energy</u> is known as <em>“stored energy”</em> that has the potential to be converted into energy of motion (kinetic energy) or another type of energy (thermal energy, for example). In addition, this energy is related to the work done when a certain force moves an object or body from its natural resting state along a distance to a new position.
So, according to this, Kinetic energy can be transformed into potential energy and Potential energy can be transformed into kinetic energy or any other type of energy. Hence, options II and III are correct.
Answer:
2.2 x 10-19
Explanation:
Kinetic Energy = 1/2 m v ^2
The word "Per" means divide
"miles per gallon" is the same as "miles / gallon"
The truck went 1,200 miles
on 55 gallons
1,200 ÷ 55 = 21.81
Answer:84.672 joules.
Explanation:
1) Data:
m = 7.2 kg
h = 1.2 m
g = 9.8 m / s²
2) Physical principle
Using the law of mechanical energy conservation principle, you have that the kinetic energy of the dog, when it jumps, must be equal to the final gravitational potential energy.
3) Calculations:
The gravitational potential energy, PE, is equal to m × g × h
So, PE = m × g × h = 7.2 kg × 9.8 m/s² × 1.2 m = 84.672 joules.
And that is the kinetic energy that the dog needs.