Waning Gibbous would be the phase?
<h2>
Law 1:</h2><h3>An object already in motion stays in motion, unless acted upon by a force.</h3><h3 /><h2>Law 2:</h2><h3>

</h3><h3>f = forces on an object</h3><h3>m = mass of that object</h3><h3>a = acceleration of that object</h3><h3 /><h2>Law 3:</h2><h3>Everything has an equal and opposite reaction.</h3><h3 /><h3>Hope this helps!</h3>
The answer would be:
B. Chlorine, iodine and Fluorine
Barium has 2 valence electrons. To satisfy the BaX₂ , this would mean that Barium will need to give one of each of its electrons. The elements that need 1 electron would be those that have 7 valence electrons to complete the octet. These elements would fall in group 7 or halogens. Chlorine, iodine and fluorine are all in Group 7, so this would be the best choice.
Answer:
5.3 m/s
Explanation:
First, find the time it takes for him to fall 7m.
y = y₀ + v₀ t + ½ at²
0 = 7 + (0) t + ½ (-9.8) t²
0 = 7 − 4.9 t²
t ≈ 1.20 s
Now find the velocity he needs to travel 6.3m in that time.
x = x₀ + v₀ t + ½ at²
6.3 = 0 + v₀ (1.20) + ½ (0) (1.20)²
v₀ ≈ 5.27 m/s
Rounded to two significant figures, the man must run with a speed of 5.3 m/s.
Answer:

Explanation:
We know that charge on electron

r= 2 nm
We know that force between two charge given

Now by putting the value


We know that mass of electron
The mass of electron

F= m a
a= Acceleration of electron
a= F/m


initial velocity given that zero ,u=0

