The brightness of the lamp is proportional to the current flowing through the lamp: the larger the current, the brighter the lamp.
The current flowing through the lamp is given by Ohm's law:

where
V is the potential difference across the lamp, which is equal to the emf of the battery, and R is the resistance of the lamp.
The problem says that the battery is replaced with one with lower emf. Looking at the formula, this means that V decreases: if we want to keep the same brightness, we need to keep I constant, therefore we need to decrease R, the resistance of the lamp.
it was too much water inside the clouds and the tornado happened
Answer:
Approximately
.
Explanation:
The refractive index of the air
is approximately
.
Let
denote the refractive index of the glass block, and let
denote the angle of refraction in the glass. Let
denote the angle at which the light enters the glass block from the air.
By Snell's Law:
.
Rearrange the Snell's Law equation to obtain:
.
Hence:
.
In other words, the angle of refraction in the glass would be approximately
.
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
Answer: It states that the BCD equivalent would be 0001000100000000000100010001000100010000000100000001000000000001.