Answer:
6.022 × 10²² atoms
Explanation:
Generally 1 mol of any element contains 6.02×10^23 atoms. The number 6.022 × 10²³ is known as Avogadro's number.
Mass of Aluminium = 2.70g
Molar mass = 27g/mol
Number of moles = Mass / Molar mass = 2.70 / 27 = 0.1 mol
1 mol = 6.022 × 10²³
0.1 mol = x
x = 6.022 × 10²³ * 0.1 = 6.022 × 10²² atoms
Following laboratory safety protocols such as wearing personal protective equipment will protect John when the accident occurred.
<h3>What are laboratory safety protocols?</h3>
Laboratory safety protocols are the protocols put in place to ensure safety in the laboratory.
Laboratory safety protocols include the following:
- always wear personal protective equipment in the laboratory
- do not play in the laboratory
- do not eat in the laboratory
Following laboratory safety protocols will help protect us from accidents which occur in the laboratory.
What happened when john was carefully pouring a chemical into a beaker when the beaker slips and breaks is an example of laboratory accident.
Wearing personal protective equipment will protect John.
In conclusion, following laboratory safety protocols will protect us when accidents occur in the laboratory.
Learn more about laboratory safety protocols at: brainly.com/question/17994387
#SPJ1
Note that the complete question is given as follows:
John is carefully pouring a chemical into a beaker when the beaker slips and breaks. How would laboratory safety protocols help John?
Answer:
It’s true
Explanation:
If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system. ... The Law of Conservation of Mass holds true because naturally occurring elements are very stable at the conditions found on the surface of the Earth.
<span>Answer is: pH of solution of sodium cyanide is 11.3.
Chemical reaction 1: NaCN(aq) → CN</span>⁻(aq)
+ Na⁺<span>(aq).
Chemical reaction 2: CN</span>⁻ +
H₂O(l) ⇄ HCN(aq) + OH⁻<span>(aq).
c(NaCN) = c(CN</span>⁻<span>)
= 0.021 M.
Ka(HCN) = 4.9·10</span>⁻¹⁰<span>.
Kb(CN</span>⁻) = 10⁻¹⁴ ÷
4.9·10⁻¹⁰ = 2.04·10⁻⁵<span>.
Kb = [HCN] · [OH</span>⁻]
/ [CN⁻<span>].
[HCN] · [OH</span>⁻<span>] =
x.
[CN</span>⁻<span>] = 0.021 M - x..
2.04·10</span>⁻⁵<span> = x² / (0.021 M
- x).
Solve quadratic equation: x = [OH</span>⁻<span>] = 0.00198 M.
pOH = -log(0.00198 M) = 2.70.
pH = 14 - 2.70 = 11.3.</span>
E.g. in H3PO4 (O, -2).
8. The sum of the oxidation states of all the atoms in a species must be equal to net charge on the species. e.g. Net Charge of HClO4 = 0, i.e. [+1(H)+7(Cl)-2<span>*4(O)] = 0.</span>