The coefficients next to the symbols of entities indicate the number of moles of a substance produced or used in the chemical reaction.
HEY THERE!
THE ANSWER IS: the properties of an ideal gas are: An ideal gas consists of a large number of identical molecules. The volume occupied by the molecules themselves is negligible compared to the volume occupied by the gas. The molecules obey Newton's laws of motion, and they move in random motion.
CREDITS:<span>physics.bu.edu/~duffy/py105/Idealgas.htm</span>
Answer;
= 64561.95 g/mole
Explanation;
mass of Fe in 100g = .346g
= .346 / 55.8452 moles
= 0.0061957 moles
These represent 4 moles of Fe in the molecule so moles of hemaglobin
= 0.0061957/4
= 0.0015489 moles
these are in 100 g so mass of 1 mole = 100 / 0.0015489
= 64561.95 g / mole
molar mass of hemoglobin = 64561.95 g/mole
First, since l = n-1,
5,4,-5,1/2 and 2,1,0,1/2 are the only answer choices left.
Next, since ml = -l to l,
2,1,0,1/2
is the answer because in 5,4,-5,1/2, the ml value of -5 is not in the range of -4 to 4, as notes by the value 4 for l.