Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
Three of them may have decayed more quickly or more slowly than they should have according to the likelihood at that particular moment. However, suppose we have a lot of radioactive new Clyde's, say six times 10 to the 12, and we have three times 10 to the 12 in a minute. The rate may then be averaged out because there are a sufficient number of radioactive new Clyde's. Furthermore, we can say with confidence that the half life is one minute.
<h3>What is radioactivity?</h3>
Radioactivity, as its name suggests, is the act of generating radiation without any external cause. An atomic nucleus that is unstable for whatever reason does this by "wanting" to give up some energy in order to change its configuration to one that is more stable. Modern physics spent a lot of time in the first half of the 20th century figuring out why this occurs, which led to a pretty solid understanding of nuclear decay by 1960. A nucleus with too many neutrons will produce a negative beta particle, which will convert one of the neutrons into a proton. A nucleus with too many protons will emit positrons, which are positively charged electrons that turn protons into neutrons.
To know more about radioactivity:
brainly.com/question/1770619
#SPJ4
Answer:
Double Covalent
Explanation:
When two of the same element combine it will always be a covalent bond between them and since sulfur has two lone electrons it will make a double bond between the two to have a full octect