Answer:
130 g of sucrose
Explanation:
Boiling point elevation formula → ΔT = Kb . m
ΔT = Boiling T° solution - Boiling T° pure solvent → 0.39°C
0.39°C = 0.513°C/m . M
m = 0.760 mol/kg → molality = moles of solute / 1kg of solvent
Let's determine the moles of solute → molality . kg
0.760 mol/kg. 0.5 kg = 0.380 moles
If we convert the moles to mass, we'll get the answer
0.380 mol . 342.30 g/mol = 130g
Answer:
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
<em>Which of the statements correctly describe the properties of a buffer?</em>
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution. TRUE. The conjugate base neutralizes the excess of hydrogen protons.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base. TRUE.
c. An acidic buffer solution is a mixture of a weak base and its conjugate acid. FALSE. This is a basic buffer solution.
d. The weak acid of an acidic buffer will accept hydrogen protons when a strong base is added to the solution. FALSE. The weak acid will react with the hydroxyl ions from the added base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution. TRUE. These hydrogen protons will form water.
f. The conjugate base of an acidic buffer will donate hydrogen protons when a strong acid is added to the solution. FALSE. It will accept hydrogen protons.
Answer:
1. a receptacle in a church for the water used in baptism, typically a freestanding stone structure.
2. A type of writing or text style
Explanation:
There are mutiple definitions of font
<u>Answer:</u>
Exothermic Reaction are those reaction, in which energy is released while in endothermic reaction are those, in which energy is absorbed.
<u>Explanation:</u>
First Reaction:
As in this reaction, energy is released
½H2(g) + ½I2(g) → HI(g), ΔH = +6.2 kcal/mole
so it is <em>exothermic reaction</em>
Second reaction:
As in this reaction, energy is absorbed
21.0 kcal/mole + C(s) + 2S(s) → CS2(l)
so it is <em>endothermic reactions</em>.